No CrossRef data available.
Published online by Cambridge University Press: 25 May 2016
“Transient brightenings” (or “microflares”) regularly deposit 1027 ergs of energy in the solar corona, and account for perhaps 20% of the active corona's power (Shimizu 1995). We assume these events correspond to episodes of magnetic reconnection along magnetic separators in the solar corona. Using the techniques of magnetic charge topology, we model active region fields as arising from normally distributed collections of “magnetic charges”, point-like sources/sinks of flux (or field lines). Here, we present statistically determined separator (X-ray loop) lengths, derived from first principles. We are in the process of statistical calculations of heating rates due to reconnection events along many separators.