Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T09:57:15.916Z Has data issue: false hasContentIssue false

Star Formation in Molecular Cloud Cores

Published online by Cambridge University Press:  04 August 2017

Frank H. Shu
Affiliation:
Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
Susana Lizano
Affiliation:
Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
Fred C. Adams
Affiliation:
Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The problem of gravitational collapse and star formation is entirely different when the ratio of the mass of a molecular cloud Mcl to its magnetic flux Φ is high than when it is low. Magnetically-diluted overall collapse of a large dense core and the formation of an OB association or a bound cluster are the likely outcomes in the former case; quasi-static contraction of many small cores and their ultimate collapse to form a T association, in the latter. In our picture, the birth of a T association in a dark cloud like Taurus proceeds by ambipolar diffusion on a time-scale of ∼ 107 years. As magnetic and turbulent support is gradually lost from a small condensing core, it approaches a state resembling a slowly rotating singular isothermal sphere which, when it passes the brink of instability, collapses from “inside-out,” building up a central protostar and nebular disk. The emergent spectral energy distributions of theoretical models in this stage of protostellar evolution resemble closely those of recently found sources with steep spectra in the infrared. The protostellar phase is ended by the reversal of the infall by an intense stellar wind, whose ultimate source of energy derived from the differential rotation of the star. We argue that the initial breakout is likely to occur along the rotational poles, leading to collimated jets and bipolar outflows. The stellar jet eventually widens to sweep out gas in nearly all 4π steradian, revealing at the center a T Tauri star and a remnant nebular disk. We give rough scaling relations which must apply if an analogous process is to succeed for producing high mass stars.

Type
I. Star Forming Processes in the Solar Neighborhood
Copyright
Copyright © Reidel 1987 

References

Adams, F. C., and Shu, F. H. 1985, Ap. J., 296, 655.Google Scholar
Adams, F. C., and Shu, F. H. 1986, submitted to Ap. J. Google Scholar
Adams, F. C., Lada, C. J. and Shu, F. H. 1986, Ap. J., in preparation.Google Scholar
Bally, J., and Lada, C. J. 1983, Ap. J., 265, 824.Google Scholar
Bertout, C., and Yorke, H. W. 1978, in Protostars and Planets, ed. Gehrels, T. (Tucson: University of Arizona Press), p. 648.Google Scholar
Bodenheimer, P., and Sweigart, A. 1968, Ap. J., 152, 515.Google Scholar
Bodenheimer, P. 1980, in IAU Symposium No. 93, Fundamental Problems in the Theory of Stellar Evolution, ed. Sugimoto, D., Lamb, D. Q., and Schramm, D. N. (Dordrecht: Reidel), p. 5.Google Scholar
Calvet, N., Basri, G., and Kuhi, L. V. 1984, Ap. J., 277, 725.CrossRefGoogle Scholar
Cassen, P., and Moosman, A. 1981, Icarus, 48, 353.CrossRefGoogle Scholar
Cassen, P., Shu, F. H., and Terebey, S. 1985, in Protostars and Planets II, ed. Black, D. C. and Matthews, M. S. (Tucson: University of Arizona Press), p. 448.Google Scholar
Cohen, M. 1984, Physics Reports, 116, no. 4, 173.CrossRefGoogle Scholar
Crutcher, R.M., and Kazes, I. 1985, Astr. Ap., submitted.Google Scholar
Elmegreen, B.G. 1979, Ap. J., 232, 729.CrossRefGoogle Scholar
Elmegreen, B.G. 1985, preprint.Google Scholar
Gillis, J., Mestel, L., and Paris, R. B. 1974, Ap, Space Sci., 27, 167.Google Scholar
Gillis, J., Mestel, L., and Paris, R. B. 1979, M. N. R. A. S., 187, 311.Google Scholar
Gusten, R., and Mezger, P. G. 1982, Vistas Astron., 26, 159.CrossRefGoogle Scholar
Hayashi, C., Hoshi, R., and Sugimoto, D. 1962, Prog. Theor. Phys. Suppl. No. 22. CrossRefGoogle Scholar
Herbig, G. 1962, Adv. Astr. Ap. 1, 47.Google Scholar
Konigl, A. 1982, Ap. J., 261, 115.Google Scholar
Kuhi, L. V. 1964, Ap. J., 140, 409.Google Scholar
Lada, C. J. 1985, Ann. Rev. Astr. Ap., 23, 267.Google Scholar
Larson, R. B. 1969, M. N. R. A.S., 145, 271.CrossRefGoogle Scholar
Larson, R. B. 1969, M. N. R. A. S., 145, 297.Google Scholar
Larson, R. B. 1985, M. N. R. A. S., 214, 379.CrossRefGoogle Scholar
Lizano, S., and Shu, F. H. 1986, in preparation.Google Scholar
Lo, K. Y., Cheung, K. W., Masson, C. R., Phillips, T. G., Scoville, N. Z., and Woody, D. P. 1986, preprint.Google Scholar
Mercer-Smith, J. A., Cameron, A. G. W., and Epstein, R. I. 1984, Ap. J., 287, 445.Google Scholar
Mestel, L., and Spitzer, L. 1956, M. N. R. A. S., 116, 503.Google Scholar
Mestel, L. 1965, Quart. J. R. A. S., 6, 161.Google Scholar
Mestel, L. 1985, in Protostars and Planets II, ed. Black, D. C. and Matthews, M. S. (Tucson: University of Arizona Press), p. 320.Google Scholar
Mouschovias, T. Ch. 1978, in Protostars and Planets, ed. Gehrels, T. (Tucson: University of Arizona Press), p. 209.Google Scholar
Mouschovias, T. Ch., and Spitzer, L. 1976, Ap. J., 210, 326.CrossRefGoogle Scholar
Mouschovias, T. Ch., and Paleologou, E. V. 1979, Ap. J., 230, 204.Google Scholar
Mouschovias, T. Ch., and Paleologou, E. V. 1980, Ap. J., 237, 877.Google Scholar
Mouschovias, T. Ch., and Paleologou, E. V. 1981, Ap. J., 246, 48.Google Scholar
Mouschovias, T. Ch. 1981, in IAU Symposium No. 91, Fundamental Problems in the Theory of Star Formation, ed. Sugimoto, D., Lamb, D. Q., and Schramm, D. N. (Dordrecht: Reidel), p. 27.Google Scholar
Mouschovias, T. Ch., Paleologou, E. V., and Fiedler, R. A. 1985, Ap. J., 291, 772.Google Scholar
Mundt, R. 1985, in Protostars and Planets II, ed. Black, D. C. and Matthews, M. S. (Tucson: University of Arizona Press), p. 414.Google Scholar
Myers, P. C., and Benson, P. J. 1983, Ap. J., 266, 309.Google Scholar
Myers, P. C., Benson, P. J., Mathieu, R., Fuller, G., Fazio, G., and Beichman, C. 1986, in preparation.Google Scholar
Nakano, T. 1979, Pub. Astr. Soc. Japan, 31, 697.Google Scholar
Nakano, T., and Umebayashi, T. 1980, Pub. Astr. Soc. Japan, 32, 613.Google Scholar
Nakano, T. 1981, Prog. Theor. Phys. Suppl. No. 70, 54.Google Scholar
Nakano, T. 1982, Pub. Astr. Soc. Japan, 34, 337.Google Scholar
Parker, E. N. 1979, Cosmical Magnetic Fields (Oxford University Press).Google Scholar
Parker, E. N. 1984, Ap. J., 286, 666.Google Scholar
Schwartz, R. D. 1983, Ann. Rev. Astr. Ap., 21, 209.Google Scholar
Scott, E. H., and Black, D. C. 1980, Ap. J., 239, 166.Google Scholar
Shu, F. H. 1977, Ap. J., 214, 488.Google Scholar
Shu, F. H. 1983, Ap. J., 273, 202.Google Scholar
Shu, F. H., and Terebey, S. 1984, in Cool Stars, Stellar Systems, and the Sun, ed. Baliunas, S. and Hartmann, L. (Berlin: Springer-Verlag), p. 78.Google Scholar
Stahler, S. W. 1983, Ap. J., 274, 822.Google Scholar
Stahler, S. W. 1984, in Cool Stars, Stellar Systems, and the Sun, ed. Baliunas, S. and Hartmann, L. (Berlin: Springer-Verlag), p. 90.Google Scholar
Stahler, S. W., Shu, F. H., and Taam, R. E. 1980, Ap. J., 241, 637.Google Scholar
Stahler, S. W., Shu, F. H., and Taam, R. E. 1980, Ap. J., 242, 226.CrossRefGoogle Scholar
Stahler, S. W., Shu, F. H., and Taam, R. E. 1981, Ap. J., 248, 727.Google Scholar
Strittmatter, P. A. 1966, M. N. R. A. S., 132, 359.Google Scholar
Strom, S. 1985, in Protostars and Planets II, ed. Black, D. C. and Matthews, M. S. (Tucson: University of Arizona Press), p. 17.Google Scholar
Terebey, S., Shu, F. H., and Cassen, P. 1984, Ap. J., 286, 529.Google Scholar
Terebey, S., and MacGregor, K. 1986, B. A. A. S., 17, 862.Google Scholar
Tohline, J. E. 1982, Fund. Cosmic Phys., 8, 1.Google Scholar
Troland, T. H., and Heiles, C. H. 1985, Ap. J., in press.Google Scholar
Vogel, S., and Kuhi, L. 1981, Ap. J., 245, 960.Google Scholar
Vrba, F. J., Strom, K. M., and Strom, S. E. 1976, A. J., 81, 958.Google Scholar
Welch, W. J., Vogel, S. N., Plambeck, R. L., Wright, M. C. H., and Biegieg, J. H. 1985, Science, in press.Google Scholar
Whitworth, A., and Summers, D. 1985, M. N. R. A. S., 214, 1.CrossRefGoogle Scholar
Winkler, K. H., and Newman, M. J. 1980, Ap. J., 236, 201.Google Scholar
Winkler, K. H., and Newman, M. J. 1980, Ap. J., 238, 311.Google Scholar
Yorke, H. W., and Krugel, E. 1977, Astr. Ap., 54, 183.Google Scholar
Yorke, H. W., and Shustov, B. M. 1981, Astr. Ap., 98, 125.Google Scholar