Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T03:26:42.998Z Has data issue: false hasContentIssue false

Star Formation from Turbulent Fragmentation

Published online by Cambridge University Press:  26 May 2016

Ralf S. Klessen*
Affiliation:
UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, U.S.A. Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Star formation is intimately linked to the dynamical evolution of molecular clouds. Turbulent fragmentation determines where and when protostellar cores form, and how they contract and grow in mass via accretion from the surrounding cloud material. Using numerical models of self-gravitating supersonic turbulence, efficiency, spatial distribution and timescale of star formation in turbulent interstellar clouds are estimated. Turbulence that is not continuously replenished or that is driven on large scales leads to a rapid formation of stars in a clustered mode, whereas interstellar turbulence that carries most energy on small scales results in isolated star formation with low efficiency. The clump mass spectrum for models of pure hydrodynamic turbulence is steeper than the observed one, but gets close to it when gravity is included. The mass spectrum of dense cores is log-normal for decaying and large-wavelength turbulence, similar to the IMF, but is too flat in the case of small-scale turbulence. The three-dimensional models of molecular cloud fragmentation can be combined with dynamical pre-main sequence stellar evolution calculations to obtain a consistent description of all phases of the star formation process. First results are reported for a one solar mass protostar.

Type
Star Formation
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Adams, F. C., Myers, P. C., 2001, ApJ, 553, 744 CrossRefGoogle Scholar
Benz, W., 1990, in The Numerical Modeling of Nonlinear Stellar Pulsations, ed. Buchler, J. R. (Dordrecht: Kluwer), 269 CrossRefGoogle Scholar
Bate, M. R., Bonnell, I. A., Price, N. M., 1995, MNRAS, 277, 362 CrossRefGoogle Scholar
D'Antona, F., Mazzitelli, I., 1994, ApJS, 90, 467 CrossRefGoogle Scholar
Ebisuzaki, T., Makino, J., Fukushige, T., Taiji, M., Sugimoto, D., Ito, T., Okumura, S. K., 1993, PASJ, 45, 269 Google Scholar
Elmegreen, B. G., 1993, ApJ, 419, L29 CrossRefGoogle Scholar
Heitsch, F., Mac Low, M.-M., Klessen, R. S., 2001, ApJ, 547, 280 CrossRefGoogle Scholar
Klessen, R. S., 1997, MNRAS, 292, 11 CrossRefGoogle Scholar
Klessen, R. S., 2001, ApJ, 556, 837 CrossRefGoogle Scholar
Klessen, R. S., Burkert, A., 2000, ApJS, 128, 287 CrossRefGoogle Scholar
Klessen, R. S., Burkert, A., 2001, ApJ, 549, 386 CrossRefGoogle Scholar
Klessen, R. S., Heitsch, F., Mac Low, M.-M., 2000, ApJ, 535, 887 CrossRefGoogle Scholar
Lada, E., 1992, ApJ, 393, L25 CrossRefGoogle Scholar
Mac Low, M.-M., 1999, ApJ, 524, 169 CrossRefGoogle Scholar
Mac Low, M.-M., Klessen, R. S., Burkert, A., Smith, M. D., 1998, Phys.Rev.Lett, 80, 2754 CrossRefGoogle Scholar
Mizuno, A., Onishi, T., Yonekura, Y., Nagahama, T., Ogawa, H., Fukui, Y., 1995, ApJ, 445, L161 CrossRefGoogle Scholar
Motte, F., André, P., Neri, R., 1998, A&A, 336, 150 Google Scholar
Padoan, P., 1995, MNRAS, 277, 337 CrossRefGoogle Scholar
Padoan, P., Nordlund, Å., 1999, ApJ, 526, 279 CrossRefGoogle Scholar
Steinmetz, M., 1996, MNRAS, 278, 1005 CrossRefGoogle Scholar
Simon, M., Dutrey, A., Guilloteau, S., 2000, ApJ, 545, 1034 CrossRefGoogle Scholar
Stone, J. M., Ostriker, E. C., Gammie, C. F., 1998, ApJ, 508, L99 CrossRefGoogle Scholar
Sugimoto, D., Chikada, Y., Makino, J., Ito, T., Ebisuzaki, T., Umemura, M., 1990, Nature, 345, 33 CrossRefGoogle Scholar
Williams, J. P., Blitz, L., McKee, C. F., 2000, in Protostars and Planets IV, eds. Mannings, V., Boss, A., & Russell, S. (Tucson: Univ. of Arizona Press), 97 Google Scholar
Woitas, J., Köhler, R., Leinert, C., 2001, A&A, 369, 249 Google Scholar
Wuchterl, G., Tscharnuter, W. M., 2001, A&A, submitted Google Scholar
Wuchterl, G., Klessen, R. S., 2001, ApJ, 560, in press (astro-ph/0109051) CrossRefGoogle Scholar
Zinnecker, H., 1984, MNRAS, 210, 43 CrossRefGoogle Scholar