Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T06:47:03.809Z Has data issue: false hasContentIssue false

The Source Populations Producing the Cosmic IR Background

Published online by Cambridge University Press:  13 May 2016

Alberto Franceschini*
Affiliation:
Padova University, Astronomy Department, Vicolo Osservatorio 1, I-35122 Padova, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Deep surveys performed with millimetric telescopes and with the Infrared Space Observatory have partly resolved the Cosmic IR Background (CIRB) into a population of IR sources characterized by extremely high rates of cosmological evolution (comparable to or higher than those observed for quasars). We report in this paper on early attempts to study these sources and to understand their physics. The IR multi-wavelength galaxy statistics can be explained by assuming, for the bulk of the IR population, spectra typical of starbursts, an indication that stellar more than quasar activity produces the IR emission by faint galaxies. From our fits to the observed optical-IR SEDs, the latter appear to mostly include massive galaxies hosting violent starbursts (SFR ~ 100 M/yr). We interpret the strong redshift-evolution as an increase with z of the rate of interactions between galaxies (density evolution) and an increase of their IR luminosity due to the more abundant fuel available in the past (luminosity evolution). Our evolutionary scheme considers a bimodal star formation (SF) in galaxies, including long-lived quiescent SF, and enhanced SF taking place during transient events triggered by interactions and merging. The large energy content in the CIRB may possibly require a top-heavy stellar IMF associated with the starburst phase. The observed evolution of galaxy IR emissivity is so strong from z=0 to z ~ 1 that the CIRB spectral shape imposes a fast turnover to the evolution at z > 1: scenarios in which a relevant fraction of stellar formation occurs at very high-z (e.g., the bulk of stars in spheroids) are not supported by our analysis.

Type
Research Article
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Aussel, H., 1998, PhD Thesis, CEA Saclay, Paris.Google Scholar
Aussel, H., Cesarsky, C., Elbaz, D., & Starck, J. L. 1999, A&A, 342, 313 Google Scholar
Barger, A., Cowie, L., Mushotzky, R., & Richards, E. 2000, ApJ, submitted (astro-ph/0007175).Google Scholar
Burigana, C., Danese, L., De Zotti, G., Franceschini, A., et al. 1997, MNRAS, 287, L17 CrossRefGoogle Scholar
Bertoldi, , et al. 2000, Highlights of Astronomy 12, in press (astroph/0010553).Google Scholar
Cohen, J., et al. 1999, in press (astro-ph/9912048).Google Scholar
Coppi, P., & Aharonian, F. 1999, Astropart. Phys., 11, 35 Google Scholar
Dole, H., Gispert, R., Lagache, G., et al. 2000, in ISO Beyond Point Sources, Studies of Extended Infrared Emission, ed. Laureijs, R., Leech, K. & Kessler, M., ESA-SP 455, 167 Google Scholar
Elbaz, D., et al. 1999, A&A, 351, L37 Google Scholar
Elbaz, D., et al. 2000, in preparation.Google Scholar
Ellis, R. S., Colless, M., Broadhurst, T., Heyl, J., & Glazebrook, K. 1996, MNRAS, 280, 235 CrossRefGoogle Scholar
Fabian, A., et al. 2000, MNRAS, 315, 8 Google Scholar
Finkbeiner, D. P., Davis, M., & Schlegel, D. J. 2000, ApJ, 544, 81 CrossRefGoogle Scholar
Fixsen, D. J., et al. 1998, ApJ, 508, 123 Google Scholar
Flores, H., Hammer, F., Thuan, T., et al. 1999, ApJ, 517, 148 Google Scholar
Franceschini, A., Mazzei, P., De Zotti, G., & Danese, L. 1994, ApJ, 427, 140 Google Scholar
Franceschini, A., et al. 2000, in preparation.Google Scholar
Franceschini, A. 2000, in Galaxies at High Redshifts, ed. Sanchez, F., Perez-Fournon, I., Balcells, M., & Moreno-Insertis, F. (Cambridge: Cambridge University Press), (astroph/0009121).Google Scholar
Gispert, R., Lagache, G., & Puget, J.-L. 2000, A&A, 360, 1 Google Scholar
Gorjian, V., Wright, E. L., & Chary, R. R. 2000, ApJ, 536, 550 Google Scholar
Harwit, M. 1999, ApJ, 510, L83 CrossRefGoogle Scholar
Harwit, M., Protheroe, R. J., & Biermann, P. L. 1999, ApJ, 524, L91 Google Scholar
Hauser, M. G., Arendt, R. G., Kelsall, T., et al. 1998, ApJ, 508, 25 Google Scholar
Hornschemeier, A. E., Brandt, W. N., & Garmire, G. P. 2000, ApJ, in press (astro-ph/0004260).Google Scholar
Kormendy, J., & Sanders, D. 1992, ApJ, 390, 53 CrossRefGoogle Scholar
Krawczynski, H., Coppi, P. S., Maccarone, T., & Aharonian, F. A. 2000, A&A, 353, 97 Google Scholar
Lagache, G., Abergel, A., Boulanger, F., Desert, F.X., & Puget, J.-L. 1999, A&A, 344, 322 Google Scholar
Lilly, S. J., et al. 1999, ApJ, 518, 641 Google Scholar
Madau, P., & Pozzetti, L. 2000, MNRAS, 312, L9 CrossRefGoogle Scholar
Mushotzky, R. F., & Loewenstein, M. 1997, ApJ, 481, L63 CrossRefGoogle Scholar
Oliver, S., et al. 2000, MNRAS, 316, 749 Google Scholar
Poggianti, B. M., Bressan, A., & Franceschini, A. 2000, ApJ, in press (astroph/0011160).Google Scholar
Puget, J.-L., et al. 1996, A&A, 308, L5 Google Scholar
Puget, J.-.L., Lagache, G., Clements, D. L., et al. 1999, A& A, 345, 29 Google Scholar
Rigopoulou, D., Franceschini, A., Aussel, H., et al. 2000, ApJ, 537, L85 Google Scholar
Risaliti, G., Gilli, R., Maiolino, R., & Salvati, M. 2000, A& A, 357, 13 Google Scholar
Roche, N., & Eales, S. A. 1999, MNRAS, 307, 703 Google Scholar
Rowan-Robinson, M., et al. 1997, MNRAS, 289, 482 CrossRefGoogle Scholar
Stanev, T., & Franceschini, A. 1998, ApJ, 494, LI59 CrossRefGoogle Scholar
Stecker, F., De Jager, O., & Salamon, M. 1992, ApJ, 390, L49 CrossRefGoogle Scholar
Vigroux, L., et al. 1998, in The Universe as seen by ISO, ESA-SP 427, 805 Google Scholar
Xu, C. 2000, ApJ, 541, 134 Google Scholar