Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T13:17:30.282Z Has data issue: false hasContentIssue false

Some processes influencing the stellar initial mass function

Published online by Cambridge University Press:  03 August 2017

Richard B. Larson*
Affiliation:
Yale Astronomy Department, Box 6666, New Haven, Connecticut 06511, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Current evidence suggests that the stellar initial mass function has the same basic form everywhere, and that its fundamental features are (1) the existence of a characteristic stellar mass of order one solar mass, and (2) the existence of an apparently universal power-law form for the mass spectrum of the more massive stars. The characteristic stellar mass may be determined in part by the typical mass scale for the fragmentation of star forming clouds, which is predicted to be of the order of one solar mass. The power-law extension of the mass spectrum toward higher masses may result from the continuing accretional growth of some stars to much larger masses; the fact that the most massive stars appear to form preferentially in cluster cores suggests that such continuing accretion may be particularly important at the centers of clusters. Numerical simulations suggest that forming systems of stars may tend to develop a hierarchical structure, possibly self-similar in nature. If most stars form in such hierarchically structured systems, and if the mass of the most massive star that forms in each subcluster increases as a power of the mass of the subcluster, then a mass spectrum of power-law form is predicted. Some possible physical effects that could lead to such a relation are briefly discussed, and some observational tests of the ideas discussed here are proposed.

Type
Star Formation
Copyright
Copyright © Kluwer 1991 

References

Athanassoula, E., Bosma, A., and Papaioannou, S. (1987) ‘Halo parameters of spiral galaxies’, Astron. Astrophys. 179, 2340.Google Scholar
Baier, G., Ladebeck, R., and Weigelt, G. (1985) ‘Speckle interferometry of the central object in the giant HII region NGC 3603’, Astron. Astrophys. 151, 6163.Google Scholar
Binney, J. and Tremaine, S. (1987) Galactic Dynamics, Princeton University Press, Princeton.Google Scholar
DePoy, D. L., Lada, E. A., Gatley, I., and Probst, R. (1990) ‘The luminosity function in NGC 2023’, Astrophys. J. (Utters) 356, L55L58.Google Scholar
Elmegreen, B. G. (1985) ‘The initial mass function and implications for cluster formation’, in Lucas, R., Omont, A., and Stora, R. (eds.), Birth and Infancy of Stars, North-Holland, Amsterdam, pp. 257277.Google Scholar
Freedman, W. L. (1985) The upper end of the stellar luminosity function for a sample of nearby resolved late-type galaxies’, Astrophys. J. 299, 7484.Google Scholar
Gatley, I., DePoy, D. L., and Fowler, A. M. (1988) ‘Astronomical imaging with infrared array cameras’, Science 242, 12641270 and cover photograph.Google Scholar
Gould, A. (1990) ‘Galactic disc column density by maximum likelihood’, Mon. Not. Roy. Astron. Soc. 244, 2528.Google Scholar
Herbig, G. H., and Terndrup, D. M. (1986) ‘The Trapezium cluster of the Orion Nebula’, Astrophys. J. 307, 609618.CrossRefGoogle Scholar
Kent, S. M. (1986) ‘Dark matter in spiral galaxies. I. Galaxies with optical rotation curves’, Astron. J. 91, 13011327.CrossRefGoogle Scholar
Kent, S. M. (1987) ‘Dark matter in spiral galaxies. II. Galaxies with HI rotation curves’, Astron. J. 93, 816832.Google Scholar
Kuijken, K., and Gilmore, G. (1989) ‘The mass distribution in the galactic disc - II. Determination of the surface mass density of the galactic disc near the Sun’, Mon. Not. Roy. Astron. Soc. 239, 605649.Google Scholar
Lada, E. A. (1990) ‘Global star formation in the L1630 molecular clouds’, this volume; Ph.D. thesis, University of Texas.CrossRefGoogle Scholar
Larson, R. B. (1978) ‘Calculations of three-dimensional collapse and fragmentation’, Mon. Not. Roy. Astron. Soc. 184, 6985.Google Scholar
Larson, R. B. (1981) ‘Turbulence and star formation in molecular clouds’, Mon. Not. Roy. Astron. Soc. 194, 809826.CrossRefGoogle Scholar
Larson, R. B. (1982) ‘Mass spectra of young stars’, Mon. Not. Roy. Astron. Soc. 200, 159174.CrossRefGoogle Scholar
Larson, R. B. (1985) ‘Cloud fragmentation and stellar masses’, Mon. Not. Roy. Astron. Soc. 214, 379398.Google Scholar
Larson, R. B. (1986) ‘Bimodal star formation and remnant-dominated galactic models’, Mon. Not. Roy. Astron. Soc. 218, 409428.Google Scholar
Larson, R. B. (1986) ‘The initial mass function’, in Norman, C. A., Renzini, A., and Tosi, M. (eds.), Stellar Populations, Cambridge University Press, Cambridge, pp. 101123.Google Scholar
Larson, R. B. (1989) ‘Fragmentation and the initial mass function’, in Tenorio-Tagle, G., Moles, M., and Melnick, J. (eds.), Structure and Dynamics of the Interstellar Medium, IAU Colloquium No. 120, Springer-Verlag, Berlin, pp. 4454.Google Scholar
Larson, R. B. (1990) ‘Formation of star clusters’, in Capuzzo-Dolcetta, R., Chiosi, C., and Di Fazio, A. (eds.), Physical Processes in Fragmentation and Star Formation, Kluwer Academic Publishers, Dordrecht, pp. 389400.CrossRefGoogle Scholar
Larson, R. B. (1990) ‘Galactic evolution’, in Lambert, D. L. (ed.), Frontiers of Stellar Evolution, Astronomical Society of the Pacific Conference Series, San Francisco, in press.Google Scholar
Larson, R. B. (1990) ‘Galaxy building’, Publ. Astron. Soc. Pacific 102, 709722.Google Scholar
Lattanzio, J. C., Keto, E. R., and Monaghan, J. J. (1990) ‘Hydrodynamical models of the W49A star-forming region’, poster presented at this conference.Google Scholar
Mateo, M. (1988) ‘Main-sequence luminosity and initial mass functions of six Magellanic Cloud star clusters ranging in age from 10 megayears to 2.5 gigayears’, Astrophys. J. 331, 261293.Google Scholar
Mateo, M. (1990) ‘The initial mass functions of Magellanic Cloud star clusters’, in Capuzzo-Dolcetta, R., Chiosi, C., and Di Fazio, A. (eds.), Physical Processes in Fragmentation and Star Formation, Kluwer Academic Publishers, Dordrecht, pp. 401414.Google Scholar
McCaughrean, M. J. (1989) ‘Multicolour near infrared imaging of the Orion Nebula and Trapezium cluster’, Bull. Amer. Astron. Soc. 21, 712; photograph published in Sky and Telescope 77, 352 (1989).Google Scholar
McCaughrean, M., Zinnecker, H., Aspin, C., and McLean, I. (1990) ‘Low mass pre-main sequence clusters in regions of massive Galactic star formation’, in Elston, R. and Pilachowski, C. A. (eds.), Astrophysics with Infrared Arrays, Astronomical Society of the Pacific Conference Series, San Francisco, in press.Google Scholar
Miller, G. E. and Scalo, J. M. (1979) ‘The initial mass function and stellar birthrate in the solar neighborhood’, Astrophys. J. Suppl. 41, 513547.Google Scholar
Miyama, S. M., Hayashi, C., and Narita, S. (1984) ‘Criteria for collapse and fragmentation of rotating, isothermal clouds’, Astrophys. J. 279, 621632.Google Scholar
Miyama, S. M., Narita, S., and Hayashi, C. (1987) ‘Fragmentation of isothermal sheet-like clouds. I. Solutions of linear and second-order perturbation equations’, Prog. Theor. Phys. 78, 10511064.Google Scholar
Miyama, S. M., Narita, S., and Hayashi, C. (1987) ‘Fragmentation of isothermal sheet-like clouds. II. Full nonlinear numerical simulations’, Prog. Theor. Phys. 78, 12731287.Google Scholar
Moffat, A. F. J., Seggewiss, W., and Shara, M. M. (1985) ‘Probing the luminous stellar cores of the giant HII regions 30 Dor in the LMC and NGC 3603 in the Galaxy’, Astrophys. J. 295, 109133.Google Scholar
Monaghan, J. J. and Lattanzio, J. C. (1990) ‘A simulation of the collapse and fragmentation of cooling molecular clouds’, Astrophys. J., in press; poster presented at this conference.Google Scholar
Mouschovias, T. Ch. (1987) ‘Star formation in magnetic interstellar clouds: I. Interplay between theory and observations’, in Morfill, G. E. and Scholer, M. (eds.), Physical Processes in Interstellar Clouds, D. Reidel Publishing Company, Dordrecht, pp. 453489.Google Scholar
Myers, P. C. (1983) ‘Dense cores in dark clouds. III. Subsonic turbulence’, Astrophys. J. 270, 105118.Google Scholar
Myers, P. C. and Goodman, A. A. (1988) ‘Magnetic molecular clouds: Indirect evidence for magnetic support and ambipolar diffusion’, Astrophys. J. 329, 392405.Google Scholar
Pryor, C., McClure, R. D., Fletcher, J. M., and Hesser, J. E. (1989) ‘Mass-to-light ratios for globular clusters. I. The centrally concentrated clusters NGC 6624, M28 (NGC 6626), and M70 (NGC 6681)’, Astron. J. 98, 596610.CrossRefGoogle Scholar
Quirk, W. J. and Tinsley, B. M. (1973) ‘Star formation and evolution in spiral galaxies’, Astrophys. J. 179, 6983.Google Scholar
Rana, N. C. (1987) ‘Mass function of stars in the solar neighbourhood’, Astron. Astrophys. 184, 104118.Google Scholar
Richstone, D. (1990) ‘Dynamical evolution of clusters of galaxies’, in Oegerle, W. R., Fitchett, M. J., and Danly, L. (eds.), Clusters of Galaxies, Cambridge University Press, Cambridge, PP. 231255.Google Scholar
Salpeter, E. E. (1955) ‘The luminosity function and stellar evolution’, Astrophys. J. 121, 161167.Google Scholar
Scalo, J. M. (1986) ‘The stellar initial mass function’, Fundam. Cosmic Phys. 11, 1278.Google Scholar
Scalo, J. M. (1987) ‘The initial mass function, starbursts, and the milky way’, in Thuan, T. X., Montmerle, T., and Tran Thanh Van, J. (eds.), Starbursts and Galaxy Evolution, Editions Frontières, Gif sur Yvette, pp. 445465.Google Scholar
Scalo, J. M. (1990) ‘Top-heavy IMFs in starburst galaxies’, in Fabbiano, G., Gallagher, J. S., and Renzini, A. (eds.), Windows on Galaxies, Kluwer Academic Publishers, Dordrecht, pp.125140.Google Scholar
Shu, F. H., and Terebey, S. (1984) ‘The formation of cool stars from cloud cores’, in Baliunas, S. L. and Hartmann, L. (eds.), Cool Stars, Stellar Systems, and the Sun, Springer-Verlag, Berlin, pp. 7889.Google Scholar
Shu, F. H., Adams, F. C., and Lizano, S. (1987) ‘Star formation in molecular clouds: observation and theory’, Ann. Rev. Astron. Astrophys. 25, 2381.Google Scholar
Shu, F. H., Lizano, S., Adams, F. C., and Ruden, S. P. (1988) ‘Beginning and end of a low-mass protostar’, in Dupree, A. K. and Lago, M. T. V. T. (eds.), Formation and Evolution of Low Mass Stars, Kluwer Academic Publishers, Dordrecht, pp. 123137.Google Scholar
Stahler, S. W. (1988) ‘Deuterium and the stellar birthline’, Astrophys. J. 332, 804825.Google Scholar
Stutzki, J. and Güsten, R. (1990) ‘High spatial resolution isotopic CO and CS observations of M17 SW: The clumpy structure of the molecular cloud core’, Astrophys. J. 356, 513533.Google Scholar
Weigelt, G. and Baier, G. (1985) ‘R136a in the 30 Doradus nebula resolved by holographic speckle interferometry’, Astron. Astrophys. 150, L18L20.Google Scholar
West, M. J. and Richstone, D. O. (1988) ‘The formation of clusters of galaxies containing dark matter’, Astrophys. J. 335, 532541.Google Scholar
Wilking, B. A., Lada, C. J., and Young, E. T. (1989) ‘IRAS observations of the ρ Ophiuchi infrared cluster: Spectral energy distributions and luminosity function’, Astrophys. J. 340, 823852.Google Scholar
Wolfire, M. G. and Cassinelli, J. P. (1987) ‘Conditions for the formation of massive stars’, Astrophys. J. 319, 850867.Google Scholar
Zinnecker, H. (1982) ‘Prediction of the protostellar mass spectrum in the Orion near-infrared cluster’, in Glassgold, A. E., Huggins, P. J., and Schucking, E. L. (eds.), Symposium on the Orion Nebula to Honor Henry Draper, Ann. New York Acad. Sci. 395, 226235.Google Scholar
Zinnecker, H. (1987) ‘A review of the IMF’, in Palous, J. (ed.), Evolution of Galaxies , Proceedings of the 10th European Regional Meeting of the IAU, Vol. 4, Czechoslovak Academy of Sciences, Prague, pp. 7785.Google Scholar
Zinnecker, H. (1989) ‘Towards a theory of star formation’, in Beckman, J. E. and Pagel, B. E. J. (eds.), Evolutionary Phenomena in Galaxies, Cambridge University Press, Cambridge, pp. 113127.Google Scholar