Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T06:44:11.996Z Has data issue: false hasContentIssue false

Solar Burst Observations at Centimeter Wavelengths

Published online by Cambridge University Press:  14 August 2015

M. R. Kundu*
Affiliation:
Astronomy Program, University of Maryland, College Park, MD

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The centimeter -wave bursts are simple: they are characterized by a rapid rise in intensity and a slower decline. The burst-radiation is in general smooth, usually free of details in time and frequency and is a partially polarized broadband continuum. It starts almost immediately after an associated Hα flare and originates from a source of small angular size (< 1′ arc). The smooth continuum emission of centimeter-wave bursts has been accounted for by synchrotron radiation from fast electrons accelerated during flares. I shall not attempt to give here a full description of the observational characteristics of centimeter bursts, rather I shall concentrate on certain specific features relevant to the understanding of the generating mechanism of these bursts. More than 20 years ago, centimeter bursts were studied with a spatial resolution as good as ∼ 1′ arc. Even with this resolution the presence of small scale structures on scales of 1′–4′ were observed in cm-λ bursts sources. Since that time both spatial and time resolution have steadily improved; we now have a spatial resolution of ″ and time resolution of ∼ 10 ms. Such resolutions have revealed smaller scale structures of a few arc seconds and more complexity in burst sources. At the same time soft x-ray observations, particularly from Skylab, with resolution better than 5″ (e.g. Kahler et al. 1975; Vorpahl et al. 1975) have given new information about the flare phenomenon. Because of the close association of soft x-ray and cm-λ burst sources, these observations are particularly important for a proper understanding of the generating mechanism of cm-λ bursts, acceleration of electrons and the origin of solar flares.

Type
Session III - Solar Bursts - cm Wavelengths
Copyright
Copyright © Reidel 1980 

References

Alissandrakis, C. E. and Kundu, M. R.: 1975, Solar Phys. 41, 119.Google Scholar
Alissandrakis, C. E. and Kundu, M. R.: 1978, Ap. J. 222, 342.Google Scholar
Brown, J. C., Melrose, D. B. and Spicer, D. S.: 1979, Ap. J. 228, 592.Google Scholar
Datlowe, D. W., Elcan, M. J. and Hudson, H. S.: 1974, Solar Phys. 39, 155.Google Scholar
DeJager, C. and Kundu, M. R.: 1963, Space Research III (ed. Priester, W., North-Holland Publishing Co., Amsterdam-Holland), 836.Google Scholar
Drake, J. F.: 1971, Solar Phys. 16, 152.CrossRefGoogle Scholar
Enomé, S., Kakinuma, T. and Tanaka, H.: 1969, Solar Phys. 6, 428.CrossRefGoogle Scholar
Hobbs, R. W., Jordan, S. D., Webster, W. J. Jr., Maran, S. P. and Caulk, H. M.: 1974, Solar Phys. 36, 369.Google Scholar
Hudson, H. S.: 1973, High Energy Phenomena on the Sun (eds. Ramaty, R. and Stone, R. G.), NASA SP-342, 207.Google Scholar
Kahler, S. W., Krieger, A. S. and Vaiana, C. S.: 1975, Ap. J. 199, L57.CrossRefGoogle Scholar
Kundu, M. R.: 1959, Ann d'Astrophys. 22, 1.Google Scholar
Kundu, M. R.: 1961, J. Geophys. Res. 66, 4308.CrossRefGoogle Scholar
Kundu, M. R.: 1965, Solar Radio Astronomy, Interscience, New York.Google Scholar
Kundu, M. R., Velusamy, T. and Becker, R. H.: 1974, Solar Phys. 34, 217.Google Scholar
Kundu, M. R., Alissandrakis, C. E., and Kahler, S. W.: 1976, Solar Phys. 50, 429.Google Scholar
Kundu, M. R., Alissandrakis, C. E., Bregman, J. D., and Hin, A. C.: 1977, Ap. J. 213, 278.Google Scholar
Kundu, M. R. and Vlahos, L.: 1979, Ap. J. 232, 595.Google Scholar
Lacy, C. H., Moffett, T. J., and Evans, D. S.: 1976, Ap. J. Suppl. 30, 85.Google Scholar
Lang, K. R.: 1974, Solar Phys. 36, 351.CrossRefGoogle Scholar
Lang, K. R.: 1977, Solar Phys. 52, 63.CrossRefGoogle Scholar
Lewin, W. H. G., Doty, J., Clark, G. W., Rappaport, S. A., Bradt, H. V. D., Doxsey, R., Hearn, D. R., Hoffman, J. A., Jernigen, J. G., Li, F. K., Mayer, W., McClintock, J., Primini, F. and Richardson, J.: 1976, Ap. J. 207, L95.CrossRefGoogle Scholar
Parker, E. N.: 1977, Ann. Rev. Astr. Ap. 15, 45.Google Scholar
Ramaty, R. and Petrosian, V.: 1972, Ap. J. 178, 241.Google Scholar
Rosner, R. and Vaiana, G. S.: 1978, Ap. J. 222, 1104.CrossRefGoogle Scholar
Sheeley, N. R. Jr., Bohlin, J. D., Brueckner, G. E., Purcell, J. D., Scherrer, V. E., Tousey, R., Smith, J. B. Jr., Speich, D. M., Tandberg-Hanssen, E., Wilson, R. M., De Loach, A. C., Hoover, R. B., McGuire, J. P.: 1975, Solar Phys. 45, 377.Google Scholar
Vlahos, L. and Papadopoulos, K.: 1979, Ap. J. (in press).Google Scholar
Vorpahl, J. A., Gibson, E. G., Landecker, P. B., McKenzie, D. L. and Underwood, J. H.: 1975, Solar Phys. 45, 199.Google Scholar