Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T16:22:40.088Z Has data issue: false hasContentIssue false

Rotational Evolution of Intermediate and Low Mass Main Sequence Stars

Published online by Cambridge University Press:  26 May 2016

John R. Stauffer*
Affiliation:
SIRTF Science Center, Keith-Spalding Building, MS 314-6, Caltech, Pasadena, CA 91125

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bob Kraft (1967) showed that there is a break in the mean rotational velocity of stars at about spectral type F5, with more massive stars generally being rapid rotators and less massive stars generally being slow rotators. He also showed that in the late F spectral range at least, there is an evolution with time on the main sequence, with younger F stars being more rapidly rotating. Kraft's observational database extended only to about one solar mass due to the sensitivy limitations of photographic plates. Modern observations of low mass stars in open clusters, extending down in mass to nearly the hydrogen burning mass limit in a few clusters, have since been used to show that rotational spindown is the common feature of stars less massive than the sun but that there is a wide spread in rotational velocities when stars arrive on the ZAMS. I will review what is known empirically concerning the rotational velocities of intermediate and low mass field stars, using the open cluster data to place the field star observations in context.

Type
Session 1 Observations of Rotating Stars
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Baliunas, S., Sokoloff, D., & Soon, W. 1996, ApJ 457, L99.CrossRefGoogle Scholar
Barnes, S., Sofia, S., & Pinsonneault, M. 2001, ApJ 548, 1071.CrossRefGoogle Scholar
Bouvier, J., Rigaut, F, & Nadeau, D. 1997, A&A 323, 139.Google Scholar
Delfosse, X., Forveille, T., Perrier, C., & Mayor, M. 1998, A&A 331, 581.Google Scholar
Donahue, R., Saar, S., & Baliunas, S. 1996, ApJ 466, 384.CrossRefGoogle Scholar
Herbst, W., Bailer-Jones, C., & Mundt, R. 2001, ApJ 554, L197.CrossRefGoogle Scholar
Jeffries, R.D., Thurston, M., & Pye, J. MNRAS 287, 350.CrossRefGoogle Scholar
Jones, B.F., Fischer, D., & Stauffer, J. 1996, AJ 112, 1562.CrossRefGoogle Scholar
Kraft, R.P. 1967, ApJ 150, 551.CrossRefGoogle Scholar
Mathieu, R. 2002, this conference.Google Scholar
Oppenheimer, B., Basri, G., Nakajima, T., & Kulkarni, S. 1997, AJ 113, 296.CrossRefGoogle Scholar
Paulson, D., & Cochran, W. 2002, priv. comm.Google Scholar
Queloz, D, Allain, S., Mermilliod, J.-C., Bouvier, J., & Mayor, M. 1998, A&A 335, 183.Google Scholar
Radick, R., Skiff, B., & Lockwood, G. 1990, ApJ 353, 524.CrossRefGoogle Scholar
Radick, R., Thompson, D., Lockwood, G., Duncan, D., & Baggett, W. 1987, ApJ 321, 459.CrossRefGoogle Scholar
Schatzman, E. 1962, Ann. d'Ap, 25, 18.Google Scholar
Sills, A., Pinsonneault, M., & Terndrup, D. 2000, ApJ 534, 335.CrossRefGoogle Scholar
Slettebak, A. 1970, IAU Colloquium 4, “Rotation, Stellar Interiors, Stellar Evolution and Stellar Atmospheres” (Dordrecht: Reidel).Google Scholar
Soderblom, D., Jones, B.F., & Fischer, D. 2001, ApJ 563, 334.CrossRefGoogle Scholar
Stauffer, J., Hartmann, L., & Latham, D. 1987, ApJ 320, L51.CrossRefGoogle Scholar
Terndrup, D., Stauffer, J., Pinsonneault, M., et al. 2000, AJ 119, 1303.CrossRefGoogle Scholar
Terndrup, D., Pinsonneault, M., Jeffries, R.D., Ford, A., Stauffer, J., and Sills, A. 2002, ApJ 576, 950.CrossRefGoogle Scholar