Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T06:56:26.487Z Has data issue: false hasContentIssue false

The Role of Dust in Producing the Cosmic Infrared Background

Published online by Cambridge University Press:  13 May 2016

Eli Dwek*
Affiliation:
Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The extragalactic background light (EBL), exclusive of the cosmic microwave background, consists of the cumulative radiative output from all energy sources in the universe since the epoch of recombination. Most of this energy is released at ultraviolet and optical wavelengths. However, observations show that a significant fraction of the EBL falls in the 10 to 1000 μm wavelength regime. This provides conclusive evidence that we live in a dusty universe, since only dust can efficiently absorbs a significant fraction of the background energy and reemit it at infrared wavelengths. The general role of dust in forming the cosmic infrared background (CIB) is therefore obvious. However, its role in determining the exact spectral shape of the CIB is quite complex. The CIB spectrum depends on the microscopic physical properties of the dust, its composition, abundance, and spatial distribution relative to the emitting sources, and its response to evolutionary processes that can modify all the factors listed above. This paper will present a brief summary of the many ways dust affects the intensity and spectral shape of the cosmic infrared background. In an Appendix we present new limits on the mid-infrared intensity of the CIB using TeV γ-ray observations of Mrk 501.

Type
Research Article
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Aguirre, A. 1999, ApJ, 525, 583 CrossRefGoogle Scholar
Aguirre, A. & Haiman, Z. 2000, ApJ, 532, 28 Google Scholar
Barger, A. J., Cowie, L. L., Mushotzky, R. F., & Richards, E. A. 2000, ApJ, submitted, astro-ph/0007175 Google Scholar
Bressan, A., Granato, G. L., & Silva, L. 1998, A&A, 332, 135 Google Scholar
Davies, J. I., & Burstein, D. 1995, The Opacity of Spiral Disks (Dordrecht: Kluwer).Google Scholar
Dwek, E. 1998, ApJ, 501, 643 CrossRefGoogle Scholar
Dwek, E., et al. 1998, ApJ, 508, 106 Google Scholar
Fioc, M., & Dwek, E. 2000, in preparation.Google Scholar
Dwek, E., Fioc, M., & Városi, F. 2000, ISO Surveys of a Dusty Universe, ed. Lemke, D., Stickel, M., Wilke, K. (Springer: Berlin), 157 Google Scholar
Guiderdoni, B., Hivon, E., Bouchet, F. R., & Maffei, B. 1998, MNRAS, 295, 877 Google Scholar
Haas, M, et al. 1998, ApJ, 503, L109 Google Scholar
Hauser, M. G., & Dwek, E. 2001, ARA&A, 39, in press.Google Scholar
Hauser, M. G. 2001, this volume.Google Scholar
Hoyle, F., Burbidge, G., & Narlikar, J. V. 1993, ApJ, 410, 437 Google Scholar
Knapp, G. R., Gunn, J. E., & Wynn-Williams, C. G. 1992, ApJ, 399, 76 CrossRefGoogle Scholar
Madden, S. C., Vigroux, L., & Sauvage, M. 1999, The Universe as Seen by ISO, ed. Cox, P. & Kessler, M. F. (Noordwijk: ESA Publication), 933 Google Scholar
Malkan, M. A., & Stecker, F. W. 1998, ApJ, 496, 13 Google Scholar
Misselt, K. A., Gordon, K. D., Clayton, G. C., & Wolff, M. J. 2000, ApJ, submitted.Google Scholar
Perlmutter, S., et al. 1999, ApJ, 517, 565 Google Scholar
Rowan-Robinson, M., & Crawford, J. 1989, MNRAS, 238, 523 CrossRefGoogle Scholar
Silva, L., Granato, G. L., Bressan, A., & Danese, L. 1998, ApJ, 509, 103 Google Scholar
Városi, F., & Dwek, E. 1999, ApJ, 523, 265 Google Scholar
Witt, A. N., & Gordon, K. D. 1996, ApJ, 463, 681 Google Scholar