Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-12T08:36:57.114Z Has data issue: false hasContentIssue false

Relativistic Reduction of Astrometric Observations

Published online by Cambridge University Press:  04 August 2017

V. A. Brumberg*
Affiliation:
Institute of Theoretical Astronomy, 191187 Leningrad, U.S.S.R.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nonuniqueness of the quasi-Galilean coordinates of general relativity leads to the emergence of unmeasurable coordinate-dependent quantities in astronomical practice. One may offer three possible ways to overcome the related difficulties:

  1. 1. developing theoretical conclusions only in terms of measurable quantities

  2. 2. using arbitrary coordinates and developing an unambiguous procedure for comparing measurable and calculated quantities

  3. 3. agreement to utilize one and only one coordinate system.

In this paper we prefer the second way. After formulating the heliocentric planetary and geocentric satellite equations of motion, the general technique for relativistic reduction in astrometry and geodynamics is developed. Specific algorithms for the reduction of absolute and relative measurements are derived for the one- and the two- body problem. For illustration, the relativistic reduction of stellar parallaxes, Doppler satellite observations, navigation measurements with the aid of satellites and radiointerferometric measurements are presented in detail.

Type
I. Reduction Technique
Copyright
Copyright © Reidel 1986 

References

Aoki, S., Fujimoto, M.K. and Fukushima, T. 1982. An Operational Procedure of the International Atomic Time. Meeting Commission 31, IAU Gen. Assembly.Google Scholar
Arifov, L. Ya. 1983. General Theory of Relativity and Gravitation. Tashkent (in Russian).Google Scholar
Arifov, L. Ya. and Kadyev, R.K. 1968. Astron. Zh. (USSR) 45, 1114.Google Scholar
Ashby, N. and Allan, D.W. 1979. Radio Science 14, 649.CrossRefGoogle Scholar
Ashby, N. and Bertotti, B. 1983. 10th Int. Conf. Gen. Relat. and Gravit., Contrib. Pap. 2, 948.Google Scholar
Ashby, N. and Bertotti, B. 1984. Phys. Rev. Lett. 52, 485.CrossRefGoogle Scholar
Boucher, C. 1978. Relativistic Correction to Satellite Doppler Observation. Meeting IAG-SSG 4: 45.Google Scholar
Brumberg, V.A. 1981a. In: Reference Coordinate Systems for Earth Dynamics (Gaposchkin, E.M. and Kolaczek, B. eds.), 238, Reidel.Google Scholar
Brumberg, V.A. 1981b. Astron. Zh. (USSR) 58, 181.Google Scholar
Brumberg, V.A. and Ivanova, T.V. 1982. In: Sun and Planetary System (Fricke, W. and Teleki, G. eds.), 423, Reidel.CrossRefGoogle Scholar
Fujimoto, M.K., Aoki, S., Nakajima, K., Fukushima, T. and Matsuzaka, S. 1982. Proc. Symp. No. 5 IAG, 26.Google Scholar
Ivanitskaja, O.S. 1979. Lorentzian Basis and Gravitational Effects in the Einsteinian Theory of Gravitation. Minsk (in Russian).Google Scholar
Kostyukovich, N.N. 1982. Vestnik AN BSSR, phys.-mat. ser., No. 5, 84.Google Scholar
Krasinsky, G.R., Pit'eva, E.V., Sveshnikov, M.L. and Sveshnikova, E.S. 1981. Doklady AN USSR 261, 1320.Google Scholar
Lestrade, J.F. and Bretagnon, P. 1982. Astron. Astrophys. 105, 42.Google Scholar
Lestrade, J.F. and Chapront-Touze', M. 1982. Astron. Astrophys. 116, 75.Google Scholar
Manasse, F.K. and Misner, C.W. 1963. J. Math. Phys. 4, 735.CrossRefGoogle Scholar
Mast, C.B. and Strathdee, J. 1959. Proc. R. Soc. A 252, 476.Google Scholar
Mikhailov, A. 1969. Astron. Zh. (USSR) 46, 454.Google Scholar
Möller, C. 1972. The Theory of Relativity. Clarendon Press, Oxford.Google Scholar
Moyer, T.D. 1981. Cel. Mech. 23, 33, 57.CrossRefGoogle Scholar
Murray, C.A. 1981. Mon. Not. R.A.S. 195, 639.CrossRefGoogle Scholar
Oesterwinter, C. and Cohen, C.J. 1972. Cel. Mech. 5, 317.CrossRefGoogle Scholar
Pavlov, N.V. 1984. Astron. Zh. (USSR) 61, 385, 600.Google Scholar
Spilker, J.I. 1978. Navigation 25, 121.CrossRefGoogle Scholar
Synge, J.L. 1960. Relativity: The General Theory. North-Holland.Google Scholar
Vladimirov, Yu. S. 1982. Systems of Reference in Gravitation Theory. Moscow (in Russian).Google Scholar
Vyblyj, Yu. P. and Kostyukovich, N.N. 1982. Appl. Math. Mech. (USSR) 46, 621.Google Scholar
Will, C.M. 1981. Theory and Experiment in Gravitational Physics. Cambridge Univ. Press.Google Scholar