Hostname: page-component-cc8bf7c57-ksm4s Total loading time: 0 Render date: 2024-12-12T07:34:54.244Z Has data issue: false hasContentIssue false

Quasar Winds as Dust Factories at High Redshift

Published online by Cambridge University Press:  26 May 2016

Martin Elvis
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge Massachusetts, USA
Massimo Marengo
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge Massachusetts, USA
Margarita Karovska
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge Massachusetts, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Winds from AGN and quasars will form large amounts of dust, as the cool gas in these winds passes through the (pressure, temperature) region where dust is formed in AGB stars. Conditions in the gas are benign to dust at these radii. As a result quasar winds may be a major source of dust at high redshifts, obviating a difficulty with current observations, and requiring far less dust to exist at early epochs.

Type
Part 3. Ejection and Outflow
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Arav, N., Shlosman, I., Weymann, R.J., (eds), 1997, Mass Ejection from AGN (ASP, San Francisco), ASP Conf. Series, Vol. 128.Google Scholar
Draine, B.T., Salpeter, E.E., 1979, ApJ, 231, 77.CrossRefGoogle Scholar
Dunne, L., Eales, S., Ivison, R., Morgan, H., Edmunds, M., 2003, Nature, 424, 285.CrossRefGoogle Scholar
Elvis, M., 2000, ApJ, 545, 63 & astro-ph/0008064.Google Scholar
Elvis, M., Marengo, M. & Karovska, , 2002, ApJ, 567, L107 & astro-ph/0202002.Google Scholar
Frenklach, M., Feigelson, E.D., 1989, ApJ, 341, 372.Google Scholar
Hamman, F., Ferland, G., 1999 ARA&A, 487.Google Scholar
Höffner, S., 1999, in proc. I.A.U. Symposium 191 on Asymptotic Giant Branch Stars, Le Bertre, T., Lèbre, A. CrossRefGoogle Scholar
Ivezić, Z., Elitzur, M., 1997, MNRAS, 287, 799.Google Scholar
Krolik, J.H., 1999, Active Galactic Nuclei (Princeton University Press, Princeton), p.365.CrossRefGoogle Scholar
Krolik, J.H., McKee, C.F., & Tarter, C.B., 1981, ApJ, 249, 422.CrossRefGoogle Scholar
Lodders, K., Fegley, B., 1999, in proc. I.A.U. Symposium no. 191 on Asymptotic Giant Branch Stars, Le Bertre, T., Lèbre, A. and Waelkens, C. eds., p. 279.Google Scholar
Mathews, W.G., 1986 ApJ, 305, 187.CrossRefGoogle Scholar
Omont, A., et al., 2001, A&A, 374, 371.Google Scholar
Osterbrock, D.E., 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Univ. Science Books, Mill Valley).CrossRefGoogle Scholar
Owocki, S. 2001, Encyclopedia of Astronomy and Astrophysics (IoP, Nature, Bristol, London & Oxford), vol.3 p. 2248.Google Scholar
Peterson, B.M., 1997, An Introduction to Active Galactic Nuclei (Cambridge Univ. Press, Cambridge).Google Scholar
Priddey, R.S., McMahon, R.G., 2001, MNRAS, 324, L17.CrossRefGoogle Scholar
Proga, D., 2001, ApJ, 538, 684.Google Scholar
Sabra, B., Hamann, F., 2001, ApJ, 563, 555.Google Scholar
Sanders, D.B., Soifer, B. T., Elias, J. H., Madore, B. F., Matthews, K., Neugebauer, G., Scoville, N. Z., 1988, ApJ, 325, 74.CrossRefGoogle Scholar
Sedlmayr, E., 1997, A&SS 1997, 251, 103.Google Scholar
Spergel, D., et al., 2003, ApJS, 148, 175.Google Scholar
Stahl, O. et al., 1993, A&AS, 99, 167.Google Scholar