No CrossRef data available.
Published online by Cambridge University Press: 25 May 2016
Lyne & Lorimer (1994) recently demonstrated that revisions to the pulsar distance scale, coupled with new interferometric measurements of pulsar proper motions and a better treatment of selection effects, indicate that typical pulsar velocities are of the order 450 km s−1. This is between a factor of 2–4 greater than most estimates made over the last decade. This paper looks at the implications of these higher velocities for the various theories about their origin. An extremely simple argument is used to place a fairly rigid upper limit for the rate at which neutron star pairs merge of 10−5 yr−1 in the Galaxy. It appears inevitable that an extremely large fraction of binaries containing neutron stars coalesce during the common-envelope stage of massive binary evolution.