Published online by Cambridge University Press: 26 May 2016
We present the results of a study of the average mass profile around galaxies using weak gravitational lensing. We use 45.5 deg2 of RC band imaging data from the Red-Sequence Cluster Survey (RCS) and define a sample of ~ 1.2 × 105 lenses with 19.5 < RC < 21, and a sample of ~ 1.5 × 106 background galaxies with 21.5 < R < 24.
We constrain the power law scaling relations between the B-band luminosity and the mass and size of the halo, and find that the results are in excellent agreement with observed luminosity–line-width relations. Under the assumption that the luminosity does not evolve with redshift, the best fit NFW model yields a mass M200 = (8.8±0.7) × 1011h–1M⊙ and a scale radius rs = I6.7+3.7–3.0h–1 kpc for a galaxy with a fiducial luminosity of Lb = 1010h–2LB⊙. the latter result is in excellent agreement with predictions from numerical simulations for a halo of this mass. We also observe a signficant anisotropy of the lensing signal around the lenses, implying that the halos are flattened and aligned with the light distribution. We find an average (projected) halo ellipticity of 〈ehalo〉 = 0.20+0.04–0.05, in fair agreement with results from numerical simulations of CDM. Alternative theories of gravity (without dark matter) predict an isotropic lensing signal, which is excluded with 99.5% confidence. Hence, our results provide strong support for the existence of dark matter.