Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T03:25:15.416Z Has data issue: false hasContentIssue false

The σ Problem of the Crab Pulsar Wind

Published online by Cambridge University Press:  19 July 2016

J. G. Kirk
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 10 39 80, 69029 Heidelberg, Germany
O. Skjæraasen
Affiliation:
Observatoire de Strasbourg, 11 rue de l'Université, F-67000 Strasbourg, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The conversion of the Crab pulsar wind from one dominated by Poynting flux close to the star to one dominated by particle-borne energy at the termination shock is considered. The idea put forth by Coroniti (1990) and criticized by Lyubarsky & Kirk (2001) that reconnection in a striped wind is responsible, is generalized to include faster prescriptions for the a priori unknown dissipation rate. Strong acceleration of the wind is confirmed, and the higher dissipation rates imply complete conversion of Poynting flux into particle-borne flux within the unshocked wind.

Type
Part 4: Pulsar Wind Nebulae and Their Environments
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Arons, J. 1979, Space Sci. Rev., 24, 437.CrossRefGoogle Scholar
Beskin, V. S., Kuznetsova, I. V., & Rafikov, R. R. 1998, MNRAS, 299, 341.CrossRefGoogle Scholar
Bogovalov, S., & Tsinganos, K. 1999, MNRAS, 305, 211.CrossRefGoogle Scholar
Buckley, R. 1977, MNRAS, 180, 125.CrossRefGoogle Scholar
Chiueh, T., Li, Z.-Y., & Begelman, M. C. 1998, ApJ, 505, 835.CrossRefGoogle Scholar
Contopoulos, I., & Kazanas, D. 2002, ApJ, 566, 336.CrossRefGoogle Scholar
Coroniti, F. V. 1990, ApJ, 349, 538.CrossRefGoogle Scholar
Emmering, R. T., & Chevalier, R. A. 1987, ApJ, 321, 334.CrossRefGoogle Scholar
Gallant, Y. A., van der Swaluw, E., Kirk, J. G., & Achterberg, A. 2002, in ASP Conf. Ser., Vol. 271, Neutron Stars in Supernova Remnants, eds. Slane, P. O., & Gaensler, B. M., (San Francisco: ASP), p. 99.Google Scholar
Harris, E. G. 1962, Nuovo Cimento, 23, 115.CrossRefGoogle Scholar
Hibschman, J. A., & Arons, J. 2001, ApJ 560, 871.CrossRefGoogle Scholar
Hoh, F. C. 1968, Physics Fluids, 9, 277.CrossRefGoogle Scholar
Kennel, C. F., & Coroniti, F. V. 1984, ApJ, 283, 694.CrossRefGoogle Scholar
Kirk, J. G., & Skjæraasen, O. 2003, ApJ, 591, 366.CrossRefGoogle Scholar
Kirk, J. G., Skjæraasen, O., & Gallant, Y. A. 2002, A&A, 388, L29.Google Scholar
Lyubarsky, Y. 1996, A&A, 311, 172.Google Scholar
Lyubarsky, Y. 2002, MNRAS, 329, L34.CrossRefGoogle Scholar
Lyubarsky, Y., & Eichler, D. 2001, ApJ, 562, 494.CrossRefGoogle Scholar
Lyubarsky, Y., & Kirk, J. G. 2001, ApJ, 547, 437.CrossRefGoogle Scholar
Rees, M. J., & Gunn, J. E. 1974, MNRAS, 167, 1.CrossRefGoogle Scholar