Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T15:55:19.269Z Has data issue: false hasContentIssue false

Primordial Nucleosynthesis For The New Millennium

Published online by Cambridge University Press:  25 May 2016

G. Steigman*
Affiliation:
Departments of Physics and Astronomy; The Ohio State University; 174 West 18th Avenue; Columbus, OH 43210 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The physics of the standard hot big bang cosmology ensures that the early Universe was a primordial nuclear reactor, synthesizing the light nuclides (D, 3He, 4He, and 7Li) in the first 20 minutes of its evolution. After an overview of nucleosynthesis in the standard model (SBBN), the primordial abundance yields will be presented, followed by a status report (intended to stimulate further discussion during this symposium) on the progress along the road from observational data to inferred primordial abundances. Theory will be confronted with observations to assess the consistency of SBBN and to constrain cosmology and particle physics. Some of the issues/problems key to SBBN in the new millenium will be highlighted, along with a wish list to challenge theorists and observers alike.

Type
2. Production and Destruction of the Elements
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Burles, S., & Tytler, D. 1998a, ApJ, 499, 699 (BT) Google Scholar
Burles, S., & Tytler, D. 1998b, ApJ, 507, 732 (BT) CrossRefGoogle Scholar
Epstein, R. Lattimer, J., & Schramm, D. N. 1976, Nature, 263, 198 Google Scholar
Evrard, A. E. 1997, MNRAS, 292, 289 Google Scholar
Evrard, A. E., Metzler, C. A., & Navarro, J. F. 1996, ApJ, 469, 494 Google Scholar
Garnavich, P. M. et al. 1998, ApJ, 509, 74 Google Scholar
Geiss, J., & Reeves, H. 1972, A&A, 18, 126 Google Scholar
Geiss, J., & Gloeckler, G. 1998, Space Sci. Rev., 84, 239 Google Scholar
Hata, N., Scherrer, R. J., Steigman, G., Thomas, D., Walker, T. P., Bludman, S., & Langacker, P. 1995, Phys. Rev. Lett, 75, 3977 Google Scholar
Linsky, J. L. 1998, Space Sci. Rev., 84, 285 Google Scholar
Izotov, Y. I., Thuan, T. X., & Lipovetsky, V. A. 1994, ApJ, 435, 647 Google Scholar
Izotov, Y. I., Thuan, T. X., & Lipovetsky, V. A. 1997, ApJS, 108, 1 CrossRefGoogle Scholar
Izotov, Y. I., & Thuan, T. X. 1998, ApJ, 500, 188 (IT) Google Scholar
Mould, J. R. et al. 1999, ApJ, submitted (astro-ph/9909260) Google Scholar
Olive, K. A., Skillman, E., & Steigman, G. 1997, ApJ, 483, 788 (OSS) Google Scholar
Olive, K. A., & Steigman, G. 1995, ApJS, 97, 49 (OS) Google Scholar
Olive, K. A., &, Steigman, G., & Walker, T. P. 1999, Physics Reports, in press (astro-ph/9905320) (OSW) Google Scholar
Pagel, B. E. J., Simonson, E. A., Terlevich, R. J. & Edmunds, M. 1992, MNRAS, 255, 325 Google Scholar
Perlmutter, S. et al. 1999, ApJ, 517, 565 Google Scholar
Persic, M., & Salucci, P. 1992, MNRAS, 258, 14P CrossRefGoogle Scholar
Steigman, G., Schramm, D. N., & Gunn, J. E. 1977, Phys. Lett., B66, 202 Google Scholar
Steigman, G., & Felten, J. E. 1995, Space Sci. Rev., 74, 245 CrossRefGoogle Scholar
Steigman, G., Hata, N., & Felten, J. E. 1999, ApJ, 510, 564 Google Scholar
Steigman, G., & Tosi, M. 1995, ApJ, 453, 173 Google Scholar
Tosi, M., Steigman, G., Matteucci, F., & Chiappini, C. 1998, ApJ, 498, 226 Google Scholar
Tytler, D., Burles, S., Lu, L., Fan, X. M., Wolfe, A., & Savage, B. D. 1999, AJ, 117, 63 Google Scholar
Viegas, S.M., Gruenwald, R., & Steigman, G. 1999, ApJ, 532 (in press, March 20, 2000; astro-ph/9909213) Google Scholar
Webb, J. K., Carswell, R. F., Lanzetta, K. M., Ferlet, R., Lemoine, M., Vidal-Madjar, A., & Bowen, D. V. 1997, Nature, 388, 250 Google Scholar
Weinberg, D. H., Miralda-Escudé, J., Hernquist, L., & Katz, N. 1997, ApJ 490, 564 Google Scholar
White, S. D. M., Navarro, J. F., Evrard, A. E., & Frenk, C. S. 1993, Nature, 366, 429 CrossRefGoogle Scholar