Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T00:26:20.007Z Has data issue: false hasContentIssue false

The post - Newtonian rotation of Earth: a first approach*

Published online by Cambridge University Press:  03 August 2017

J. Schastok
Affiliation:
Lehrstuhl für Theor. Astrophysik, Auf der Morgenstelle 12, D-7400 Tübingen, FRG
M. Soffel
Affiliation:
Lehrstuhl für Theor. Astrophysik, Auf der Morgenstelle 12, D-7400 Tübingen, FRG SFB78 Satellitengeodäsie, Technische Universität München, D-8000 München, FRG
H. Ruder
Affiliation:
Lehrstuhl für Theor. Astrophysik, Auf der Morgenstelle 12, D-7400 Tübingen, FRG
M. Schneider
Affiliation:
SFB78 Satellitengeodäsie, Technische Universität München, D-8000 München, FRG

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The problems of dynamics of extended bodies in metric theories of gravity are reviewed. In a first approach towards the relativistic description of the Earth's rotational motion the post - Newtonian treatment of the free precession of a pseudo - rigid and axially symmetric model Earth is presented. Definitions of angular momentum, pseudo - rigidity, the corotating frame, tensor of inertia and axial symmetry of the rotating body are based upon the choice of the standard post - Newtonian (PN) coordinates and the full PN energy momentum complex. In this framework, the relation between angular momentum and angular (coordinate) velocity is obtained. Since the PN Euler equations for the angular velocity here formally take their usual Newtonian form it is concluded that apart from PN modifications (renormalizations) of the inertia tensor, the rotational motion of our pseudo - rigid and axially symmetric model Earth essentially is “Newtonian”.

Type
V. Precession & Nutation
Copyright
Copyright © Reidel 1988 

References

Barker, B.M., O'Connell, R.F., 1975, Phys. Rev. D12, 329 Google Scholar
Börner, G., Ehlers, J., Rudolph, E., 1975, Astron. Astroph. 44, 417 Google Scholar
Caporali, A., 1979, An Approximation Method for the Determination of the Motion of Extended Bodies in General Relativity, , Google Scholar
Dixon, W.G., 1979, in: Ehlers, J. (Ed.), Isolated Gravitating Systems in General Relativity, North Holland Publishing Company, Amsterdam Google Scholar
Ehlers, J., Rudolph, E., 1977, Gen. Rel. Grav. 8, 197 Google Scholar
Fukushima, T., 1986, in: Kovalevsky, J. and Brumberg, V.A. (Eds.), Relativity in Celestial Mechanics and Astrometry, D. Reidel Publishing Company, Dordrecht Google Scholar
Misner, C.W., Thorne, K.S., Wheeler, J.A., 1973, Gravitation, Freeman, San Francisco Google Scholar
Spyrou, N., 1978, Cel. Mech. 18, 351 Google Scholar
Synge, J.L., 1966, Relativity: The general Theory, North Holland Publishing Company, Amsterdam Google Scholar
Thorne, K.S., Gürsel, Y., 1983, Mon. Not. R. astr. Soc. 205, 809 CrossRefGoogle Scholar
Will, C.M., 1981, Theory and experiment in gravitational physics, Cambridge University press Google Scholar