Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-06T02:15:48.644Z Has data issue: false hasContentIssue false

Possible Constituents of Halos

Published online by Cambridge University Press:  04 August 2017

Martin J. Rees*
Affiliation:
Institute of Astronomy, Madingley Road, Cambridge CB3 OHA, United Kingdom

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There still seem to be three serious contenders for the dark matter in galactic halos and groups of galaxies: (i) very low mass stars, (ii) black hole remnants of very massive stars or (iii) some species of particle (e.g. axions, photinos, etc.) surviving from the big bang. There are genuine prospects of detecting individual objects in all three of these categories, and thereby narrowing down the present range of options. If the Universe has the critical density (Ω = 1), rather than the lower value (Ω = 0.1–0.2) inferred from dynamical evidence, then the galaxies must be more clustered than the overall distribution even on scales 10–20 Mpc. “Biased” galaxy formation could account for this.

Type
Review Paper
Copyright
Copyright © Reidel 1987 

References

Alcock, C. and Farhi, H. 1985. Phys. Rev. D. (in press).Google Scholar
Applegate, J. and Hogan, C.J. 1985. Phys. Rev. D31, 3037.Google Scholar
Arp, H. and Bertola, F. 1969. Astrophys. Lett., 4, 23.Google Scholar
Blumenthal, G., Faber, S.M., Primack, J.R., Rees, M.J. 1984. Nature, 311, 517.CrossRefGoogle Scholar
Boughn, S.P., Saulson, P.R., Seldner, M. 1981. Astrophys. J., 250, L15.CrossRefGoogle Scholar
Canizares, C.R. 1982. Astrophys. J., 263, 508.CrossRefGoogle Scholar
Carr, B.J. 1978. Comm. Astrophys., 7, 161.Google Scholar
Carr, B.J., Bond, J.R. and Arnett, W.D. 1984. Astrophys. J., 277, 445.CrossRefGoogle Scholar
Davis, M., Efstathiou, G., Frenk, C.S. and White, S.D.M. 1985. Astrohys. J., (in press).Google Scholar
De Rujula, A. and Glashow, S.L. 1984. Nature, 312, 734.CrossRefGoogle Scholar
Drukier, A.K., Freese, K. and Spergel, D.N. 1985. preprint.Google Scholar
Fabian, A.C., Arnaud, K. and Thomas, P. 1986. these proceedings.Google Scholar
Fabian, A.C., Nulsen, P.E.J., Canizares, C.R. 1984. Nature, 310, 733.CrossRefGoogle Scholar
Frenk, C., Davis, M., Efstathiou, G. and White, S.D.M. 1985. Astrophys. J. (submitted).Google Scholar
Goodman, M.W. and Witten, E. 1985. Phys. Rev. D31, 3059.Google Scholar
Gott, J.R. 1981. Astrophys. J. 243, 140.CrossRefGoogle Scholar
Gott, J.R. 1982.Google Scholar
Hegyi, D.J., Gerber, G.L. 1977. Astrophys. J., 218, L7.CrossRefGoogle Scholar
Hegyi, D.J. and Olive, K.A. 1985. Astrophys. J. (in press).Google Scholar
Ipser, J.R. and Price, R.H. 1977. Astrophys. J., 216, 578.CrossRefGoogle Scholar
Ipser, J.R. and Price, R.H. 1982. Astrophys. J., 255, 651.CrossRefGoogle Scholar
Kaiser, N. 1984. Astrophys. J. (Lett), 284, L9.CrossRefGoogle Scholar
Krauss, L., Freese, K., Spergel, D. and Press, W.H., preprint.Google Scholar
Krauss, L., Cabrera, B., and Wilczek, F. 1985b Phys. Rev. Lett. (in press) Google Scholar
Lacey, C.G. 1984. in “Formation and Evolution of Galaxies and Large Structures in the Universe”, eds. Audouze, J. and Tran Thanh Van, J. (Reidel, Dordrecht).Google Scholar
Lacey, C.G., Ostriker, J.P. 1985. Astro. Phys. J. (in press).Google Scholar
Larson, R.B. 1985. MNRAS (in press).Google Scholar
McDowell, J. 1985. MNRAS (in press).Google Scholar
Madsen, J. and Epstein, R.I., 1984. Astrophys. J., 282, 11.CrossRefGoogle Scholar
Miller, G.E. and Scalo, J.M. 1979. Astrophys. J. Suppl., 41, 513.CrossRefGoogle Scholar
Peebles, P.J.E. 1985. in “Theoretical Aspects of Astrophysics and Cosmology” ed. Sanz, J. (World Scientific Publishers, Singapore).Google Scholar
Press, W.H. and Spergel, D. 1985. Astrophys. J. (in press).Google Scholar
Rees, M.J. 1985. MNRAS, 213, 75P.CrossRefGoogle Scholar
Refsdal, S. 1970. Astrophys. J., 159, 357.CrossRefGoogle Scholar
Salpeter, E.E. 1955. Astrophys. J., 121, 161.CrossRefGoogle Scholar
Scalo, J.M. 1985. Fundam. Cosmic Phys. (in press).Google Scholar
Silk, J.I. 1985. Astrophys. J. (in press).Google Scholar
Silk, J.I., Olive, K. and Srednicki, M. 1985. preprint.Google Scholar
Silk, J.I. and Srednicki, M. 1984. Phys. Rev. Lett., 53, 624.CrossRefGoogle Scholar
Steigman, G., Sarazin, C.L., Quintana, H. and Faulkner, J. 1978. Astron. J., 83, 1050.CrossRefGoogle Scholar
Tremaine, S. and Gunn, J.E. 1979. Phys. Rev. Lett., 42, 407.CrossRefGoogle Scholar
Truran, J.W. and Cameron, A.G.W. 1971. Astrophys. Sp. Sci., 14, 179.CrossRefGoogle Scholar
Uson, J. and Wilkinson, D.T. 1984. Nature, 312, 427.CrossRefGoogle Scholar
Witten, E. 1984. Phys. Rev., D30, 272.Google Scholar
Woosley, S.E. and Weaver, T.A. 1982 in “Supernovae: a Survey of Current Research”, eds. Rees, M.J. and Stoneham, R.J. (Reidel, Dordrecht).Google Scholar
Yang, J., Turner, M.S., Steigman, G., Schramm, D.N. and Olive, K.A. 1984. Astrophys. J., 281, 493.CrossRefGoogle Scholar
Young, P.J. 1981. Astrophys. J., 244, 756.Google Scholar