Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T16:05:55.207Z Has data issue: false hasContentIssue false

Polynomial expansion of the planetary secular terms: relativistic and lunar perturbations.(*)

Published online by Cambridge University Press:  04 August 2017

Jacques Laskar*
Affiliation:
Service de Mécanique Céleste du Bureau des Longitudes Equipe de Recherche Associée au CNRS 77 Avenue Denfert-Rochereau F-75014 Paris, France Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, Pasadena, California, 91109 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The relativistic and lunar perturbations must be included in a realistic theory of the secular evolution of the planetary elements. In our general theory, we include the first order of these perturbations. Comparison with more elaborated studies shows that it is sufficient with respect to the accuracy of our theory.

Type
Motions of Natural Bodies in the Solar System
Copyright
Copyright © Reidel 1986 

References

Abu El Ata, N., Chapront, J.: 1975, Astron. Astrophys. 38, 57-.Google Scholar
Berger, A., Imbrie, J., Hays, J., Kukla, G., Saltzman, B., eds.: 1984, Milankovitch and Climate, Reidel Publishing Company.CrossRefGoogle Scholar
Bretagnon, P.: 1974, Astron. Astrophys. 30, 141154.Google Scholar
Bretagnon, P.: 1982, Astron. Astrophys. 114, 278288.Google Scholar
Bretagnon, P.: 1984a, Accuracy of long term planetary theory, in Milankovitch and Climate, Berger, A., et al. eds.Google Scholar
Bretagnon, P.: 1984b, Celest. Mech. 34, 193201.Google Scholar
Bretagnon, P.: 1984c, personal communication.Google Scholar
Bretagnon, P., Simon, J. L., Laskar, J.: 1985, Presentation of new Solar and Planetary Tables of interest for historical calculations. Journal for the History of Astronomy, submitted.CrossRefGoogle Scholar
Brouwer, D., Van Woerkom, A. j.: 1950, APAE Vol. XIII, 2 Google Scholar
Brumberg, V. A., Egorova, A. V.: 1971, Nablyudenya Iskustvenykh Nebesnykh Tel, 62, 4272. (in russian) Google Scholar
Brumberg, V. A.: 1972, Relativistic Celestial Mechanics, Nauka, Moscow. (in russian) Google Scholar
Brumberg, V. A.: 1980, Analytical Algorithms of Celestial Mechanics, Nauka, Moscow. (in russian) Google Scholar
Chapront, J.: 1970, Astron. Astrophys. 7, 175-.Google Scholar
Chapront-Touzé, M., Chapront, J.: 1983, Astron. Astrophys. 124, 5062.Google Scholar
Duriez, L.: 1977, Astron. Astrophys. 54, 93112.Google Scholar
Duriez, L.: 1979, Approche d'une Théorie Générale Planétaire en variables elliptiques héliocentriques, Thèse, Lille .Google Scholar
Hill, G. W.: 1897, Astron. J. 17, 11 Google Scholar
Kinoshita, H.: 1977, Theory of the rotation of the rigid Earth, Celest. Mech. 15, 277326.Google Scholar
Laskar, J.: 1984, Théorie générale planétaire: éléments orbitaux des planètes sur un million d'années, Thèse de troisième cycle, Observatoire de Paris.Google Scholar
Laskar, J.: 1985a, Astron. Astrophys. 144, 133146.Google Scholar
Laskar, J.: 1985b, Secular terms of classical planetary theories using the results of general theory, Astron. Astrophys. (submitted for publication).Google Scholar
Lestrade, J. F., Bretagnon, P.: 1982, Astron. Astrophys. 105, 4252.Google Scholar
Newhall, X. X., Standish, E. M., Williams, J. G.: 1983, Astron. Astrophys. 125, 150167.Google Scholar