Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T00:10:36.575Z Has data issue: false hasContentIssue false

Planetary Nebulae in Galaxies Beyond the Local Group

Published online by Cambridge University Press:  19 July 2016

H. C. Ford
Affiliation:
Space Telescope Science Institute, Homewood Campus, Baltimore, MD 21218
R. Ciardullo
Affiliation:
Space Telescope Science Institute, Homewood Campus, Baltimore, MD 21218
G. H. Jacoby
Affiliation:
Kitt Peak National Observatory, Tucson, AZ 85726
X. Hui
Affiliation:
Boston University, Boston, MA 02215

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Planetary nebulae can be used to estimate the distances to galaxies and to measure stellar dynamics in faint halos. We discuss surveys which have netted a total of 665 candidate planetary nebulae in NGC 5128 (Cen A), NGC 5102, NGC 3031 (M81), NGC 3115, three galaxies in the Leo Group (NGC 3379, NGC 3384, NGC 3377), NGC 5866, and finally, in NGC 4486 (M87). Radial velocities of planetaries in M32 have shown that its halo velocity dispersion is most likely isotropic. Radial velocities of planetaries in M31 show that ∼ 2/3 of the nebulae with projected radii between 15 and 30 kpc are members of a rotating thick disk with slight asymmetric drift, while ∼ 1/3 belong to a slowly rotating halo. Velocities of 116 nebulae in NGC 5128 reveal pronounced rotation and a slowly declining velocity dispersion in the halo out to 20 kpc. The [O III] λ5007 luminosity functions (PNLFs) in NGC 5128, M81, and the three Leo Galaxies have the same shape over the first magnitude. The highly consistent distances derived from the brightnesses of the jth nebula and the median nebula in different fields in the same galaxy and from different galaxies in the same group lend strong support to the suggestion that planetaries are an accurate standard candle in old stellar populations. Comparison of theoretical luminosity functions to the observed PNLFs shows that there is a very small dispersion in the central star masses.

Type
IV. Extragalactic Nebulae
Copyright
Copyright © Kluwer 1989 

References

Aller, L.H. and Czyzak, S.J. 1983, Ap. J. Suppl., 51, 211.Google Scholar
Aller, L.H. and Keyes, C.D. 1980, Ap. Sp. Sci., 72, 203.CrossRefGoogle Scholar
Balick, B. 1975, Ap. J., 203, 705.Google Scholar
Cahn, J. H. and Wyatt, S. P. 1978, in IAU Symposium 76, Planetary Nebulae Observations and Theory, ed. Terzian, Y. (Dordrecht:Reidel), p. 3.Google Scholar
Cudworth, K. M. 1974, A. J., 79, 1384.Google Scholar
Dopita, M. A., Meatheringham, S. J., Wood, P. R., Ford, H. C., Webster, B. L., and Morgan, D. H. 1988, Paper presented at the ESO Workshop on “The Evolution and Dynamics of the Outer Halo of the Galaxy” April 7–9, 1987.Google Scholar
D'Odorico, S. and Dopita, M. 1983, in IAU Symposium 101, Supernova Remnants and Their X-ray Emission, ed. Danziger, J. and Gorenstein, P. (Dordrecht: Reidel), p. 517.CrossRefGoogle Scholar
Dufour, R. J., van den Bergh, S., Harvel, C. A., Martins, D. H., Schiffer, F. H. III, Talbot, R.J. Jr., Talent, D. L., and Wells, D. N. 1979, A. J., 84, 284.Google Scholar
Eather, R. H. and Reasoner, D. L. 1969, Appl. Optics, 8, 227.Google Scholar
Ford, H.C. 1983, in IAU Symposium 103, Planetary Nebulae, ed. Flower, D.R. (Dordrecht:Reidel), p. 443.Google Scholar
Ford, H. C., Freeman, K. C., Hui, X., Ciardullo, R., Dopita, M. A., Jacoby, G., and Meatheringham, S. 1988, in preparation. Google Scholar
Keyes, C.D. and Aller, L.H. 1980, Ap. Sp. Sci., 72, 203.Google Scholar
Hartwick, F. D. A. and Sargent, W. L. W. 1978, Ap. J., 221, 512.Google Scholar
Huchra, J., Stauffer, J., and van Speybroeck, L. 1982, Ap. J. (Letters), 259, L57.Google Scholar
Jacoby, G. H. 1980, Ap. J. Suppl., 42, 1.Google Scholar
Jacoby, G. and Ford, H. C. 1986, Ap. J., 304, 490.CrossRefGoogle Scholar
Jacoby, G. and Ford, H. C. 1988, in preparation. Google Scholar
Jacoby, G. H. and Lesser, M. P. 1981, A. J., 86, 185.Google Scholar
Jaffe, W. 1983, M.N.R.A.S., 202, 995.Google Scholar
Lawrie, D. G. 1983, Ap. J., 273, 562.CrossRefGoogle Scholar
Lawrie, D. G. and Ford, H. C. 1982, Ap. J., 256, 120.Google Scholar
Merritt, D. 1985, A. J., 90, 1027.Google Scholar
Nolthenius, R. 1984, , University of California, Los Angeles.Google Scholar
Nolthenius, R. and Ford, H. C. 1986, Ap. J., 305, 600.CrossRefGoogle Scholar
Nolthenius, R. and Ford, H. C. 1987, Ap. J., 317, 62.CrossRefGoogle Scholar
Pottasch, S. R. 1988, IAU Symposium 181, ed. Torres-Peimbert, S. (Dordrecht:Reidel), this volume. Google Scholar
Schönberner, D. 1981, Astr. Ap, 103, 119.Google Scholar
Schönberner, D. 1983, Ap. J., 272, 708.Google Scholar
Schönberner, D. and Weidemann, V. 1983, IAU Symposium 103, Planetary Nebulae, ed. Flower, D.R. (Dordrecht:Reidel), p. 359.CrossRefGoogle Scholar
Shaw, R. A. 1988, IAU Symposium 131, ed. Torres-Peimbert, S. (Dordrecht:Reidel), this volume. Google Scholar
Tonry, J. L. 1984, Ap. J. (Letters), 283, L27.Google Scholar
Tuohy, I. R. and Dopita, M. A. 1983, in IAU Symposium 101, Supernova Remnants and Their X-ray Emission, ed. Danziger, J. and Gorenstein, P. (Dordrecht:Reidel) p. 165.Google Scholar
van den Bergh, S. 1969, Ap. J. Suppl., 19, 145.CrossRefGoogle Scholar
Whitmore, B. C. 1980, Ap. J., 242, 53.Google Scholar
Wilkinson, A., Sharpies, R. M., Fosbury, R. A. E., and Wallace, P. T. 1986, M.N.R.A.S., 218, 297.Google Scholar
Wood, P.R. and Faulkner, D.J. 1986, Ap. J., 307, 659.CrossRefGoogle Scholar
Young, P. J. 1976, A. J., 81, 807.Google Scholar