Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-12T08:42:28.853Z Has data issue: false hasContentIssue false

The Physics of Soft Gamma Repeaters

Published online by Cambridge University Press:  25 May 2016

C. Thompson*
Affiliation:
University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC 27599, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I describe the evidence that Soft Gamma Repeaters are magnetars—neutron stars in which a decaying magnetic field (rather than rotation) is the dominant source of free energy. The focus here is on the bursting emission of these sources and on direct physical diagnostics of very strong magnetic fields (B ≳ 10 BQED = 4.4 × 1014 G). I also summarize the trapped fireball model of SGR outbursts, the influence of QED processes on their spectra and lightcurves, and the genetic connection between neutron star magnetism and the violent fluid motions in a collapsing supernova core.

Type
Part I: Talks
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Adler, S. L. 1971, Ann. Phys., 67, 599.CrossRefGoogle Scholar
Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214.Google Scholar
Baring, M. A. 1995, ApJ, 440, L69.Google Scholar
Baym, G., Pethick, C., & Pines, D. 1969, Nature, 224, 674.CrossRefGoogle Scholar
Cheng, B., Epstein, R. I., Guyer, R. A., & Young, A. C. 1996, Nature, 382, 518.Google Scholar
Duncan, R. C., & Thompson, C. 1992, ApJ, 392, L9 (DT92).CrossRefGoogle Scholar
Duncan, R. C., & Thompson, C. 1995, in High Velocity Neutron Stars and Gamma-Ray Bursts, eds. Rothschild, R. E. & Lingenfelter, R. E. (New York: AIP), 111.Google Scholar
Fenimore, E. E., Klebesadel, R. W., & Laros, J. G. 1996, ApJ, 460, 964.CrossRefGoogle Scholar
Feroci, M., et al. 1999 ApJ, 515, 9.CrossRefGoogle Scholar
Feroci, M., et al., in preparation.Google Scholar
Goldreich, P., & Reisenegger, A. 1992, ApJ, 395, 250.CrossRefGoogle Scholar
Göğüş, E., et al. 1999, ApJ, 526, L93.Google Scholar
Göğüş, E., et al. 2000, ApJ, submitted.Google Scholar
Harding, A. K., Contopoulos, I., & Kazanas, D. 1999, ApJ, 525, L125.CrossRefGoogle Scholar
Herold, H. 1979, Phys. Rev. D, 19, 2868.CrossRefGoogle Scholar
Heyl, J. S., & Hernquist, L. 1997, ApJ, 489, L67.Google Scholar
Heyl, J. S., & Hernquist, L. 1999, MNRAS, 300, 599.CrossRefGoogle Scholar
Heyl, J. S., & Kulkarni, S. R. 1998, ApJ, 506, L61.Google Scholar
Hurley, K. J., McBreen, B., Rabbette, M., & Steel, S. 1994, A&A, 288, L49.Google Scholar
Hurley, K., et al. 1999a, Nature, 397, 41.Google Scholar
Hurley, K., et al. 1999b, ApJ, 510, L107.Google Scholar
Hurley, K., et al. 1999c, ApJ, 510, L111.Google Scholar
Janka, H.-T., & Mueller, E. 1996, A&A, 306, 167.Google Scholar
Kouveliotou, C., et al. 1987, ApJ, 322, L21.Google Scholar
Kouveliotou, C., et al. 1998, Nature, 393, 235.CrossRefGoogle Scholar
Kouveliotou, C., et al. 1999, ApJ, 510, L115.Google Scholar
Kulkarni, S. R., & Frail, D. A. 1993, Nature, 365, 33.Google Scholar
Leblanc, J. M., & Wilson, J. R. 1970, ApJ, 161, 541.Google Scholar
Lewin, W. H. G., van Paradijs, J., & van den Heuvel, E. P. J. 1995, X-ray Binaries (Cambridge: University Press).Google Scholar
Manchester, R. N., & Taylor, J. H. 1977, Pulsars (San Francisco: Freeman).Google Scholar
Marsden, D., Rothschild, R. E., & Lingenfelter, R. E. 1999, ApJ, 520, L107.Google Scholar
Mazets, E. P., et al. 1999a, Astron. Lett., 25, 628.Google Scholar
Mazets, E. P., et al. 1999b, Astron. Lett., 25, 635.Google Scholar
Mereghetti, S. 2000, in The Neutron Star - Black Hole Connection, eds. Kouveliotou, C., van Paradijs, J., & Ventura, J. (Dordrecht: Kluwer), in press.Google Scholar
Mereghetti, S., & Stella, L. 1995, ApJ, 442, L17.Google Scholar
Mészáros, P. 1992, High-Energy Radiation from Magnetized Neutron Stars (Chicago: University Press).Google Scholar
Miller, M. C. 1995, ApJ, 448, L29.CrossRefGoogle Scholar
Murakami, T., et al. 1994, Nature, 368, 127.CrossRefGoogle Scholar
Norris, J. P., Hertz, P., Wood, K. S., & Kouveliotou, C. 1991, ApJ, 366, 240.Google Scholar
Paczyński, B. 1992, Acta Astron., 42, 145.Google Scholar
Palmer, D. M. 1999, ApJ, 512, L113.Google Scholar
Pethick, C. J. 1992, in Structure and Evolution of Neutron Stars, eds. Pines, D., Tanagaki, R., & Tsuruta, S. (Redwood City: Addison-Wesley), 115.Google Scholar
Pons, J. A., et al. 1999, ApJ, 513, 780.Google Scholar
Rothschild, R. E., Kulkarni, S. R., & Lingenfelter, R. E. 1994, Nature, 368, 432.CrossRefGoogle Scholar
Thompson, C. 2000a, ApJ, in press.Google Scholar
Thompson, C. 2000b, in Pulsar Astronomy − 2000 and Beyond, eds. Kramer, M., Wex, N., & Wielebinski, R. (San Francisco: AIP), in press.Google Scholar
Thompson, C., & Blaes, O. 1998, Phys. Rev. D, 57, 3219.Google Scholar
Thompson, C., & Duncan, R. C. 1992, in Compton Gamma Ray Observatory, eds. Friedlander, M., Gehrels, N., & Macomb, R. J. (New York: AIP), 1085.Google Scholar
Thompson, C., & Duncan, R. C. 1993, ApJ, 408, 194 (TD93).CrossRefGoogle Scholar
Thompson, C., & Duncan, R. C. 1995, MNRAS, 275, 255 (TD95).Google Scholar
Thompson, C., & Duncan, R. C. 1996, ApJ, 473, 322 (TD96).Google Scholar
Thompson, C., et al. 1999, astro-ph/9908086, preprint.Google Scholar
Thompson, C., & Murray, N. W. 2000, ApJ, submitted.Google Scholar
Ulmer, A. 1994, ApJ, 437, L111.Google Scholar
Ulmer, A., et al. 1993, ApJ, 418, 395.CrossRefGoogle Scholar
van Paradijs, J., Taam, R. E., & van den Heuvel, E. P. J. 1995, A&A, 299, L41.Google Scholar
Woods, P. M., et al. 1999, ApJ, 519, L139.Google Scholar
Woods, P. M., et al. 2000, ApJ, in press.Google Scholar