Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-06T01:49:04.217Z Has data issue: false hasContentIssue false

Photoelectric spectrophotometry of emission nebulosities in the Magellanic Clouds

Published online by Cambridge University Press:  14 August 2015

H. R. Dickel
Affiliation:
University of Michigan
L. H. Aller
Affiliation:
University of California, Los Angeles
D. J. Faulkner
Affiliation:
Mount Stromlo Observatory

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Photometric measurements of the emission nebulosities in the LMC are not numerous. Doherty, Henize, and Aller (1956) microphotometered both widened and unwidened objective-prism photographs covering a narrow wavelength range near Hα to obtain cross-sectional “intensity profiles” for certain nebulosities in the Large Cloud. These intensities were converted to surface brightnesses by tracing the widened spectra of stars of known magnitude and colour and using the method of Ambartsumian (1933). Peak intensities for each scan across a nebulosity are given in erg cm–2 sec–1 steradian–1.

Type
Section II: The Magellanic Clouds
Copyright
Copyright © Australian Academy of Science 1964 

References

Aller, L. H. (1954a).—“Astrophysics: Nuclear Transformations, Stellar Interiors and Nebulae.” (Ronald Press Co.: New York.)Google Scholar
Aller, L. H. (1954b).— Ap. J. 120: 401–12.Google Scholar
Aller, L. H. (1956).—“Gaseous Nebulae.” (Wiley: New York.)Google Scholar
Aller, L. H., and Faulkner, D. J. (1962).— P.A.S.P. 74: 219–22.Google Scholar
Aller, L. H., and Liller, W. (1959).— Ap. J. 130: 4556.Google Scholar
Ambartsumian, V. A. (1933).— Zs. f. Ap. 6: 107–13.Google Scholar
Burgess, A. (1958).— M.N. 118: 477–95.Google Scholar
Doherty, L., Henize, K. G., and Aller, L. H. (1956).— Ap. J. Suppl. 2: 345–63.Google Scholar
Henize, K. G. (1956).— Ap. J. Suppl. 2: 315–44.Google Scholar
Henize, K. G., and Westerlund, B. E. (1963).— Ap. J. 137: 747.Google Scholar
Johnson, H. M. (1959).— P.A.S.P. 71: 425–34.Google Scholar
Johnson, H. M. (1961).— P.A.S.P. 73: 20–9.Google Scholar
Lindsay, E. M. (1961).— A. J. 66: 169–85.Google Scholar
Mathis, J. S. (1962).— Ap. J. 136: 374–80.CrossRefGoogle Scholar
Nail, V., Whitney, C. A., and Wade, C. M. (1953).— Proc. Nat. Acad. Sci. (Washington) 39: 1168–76.Google Scholar
Seaton, M. J. (1960).— Rep. Progr. Phys. 23: 313–54.Google Scholar
Seaton, M. J., and Osterbrock, D. E. (1957).— Ap. J. 125: 6683.Google Scholar
Shapley, H., and Wilson, H. H. (1925a).—Harvard Obs. Circular No. 271.Google Scholar
Shapley, H., and Wilson, H. H. (1925b).—Harvard Obs. Circular Nos. 275, 276.Google Scholar
Willstrop, R. V. (1960).— M.N. 121: 1740.Google Scholar