Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T00:45:56.699Z Has data issue: false hasContentIssue false

The Pattern of Convection in the Sun

Published online by Cambridge University Press:  14 August 2015

N. O. Weiss*
Affiliation:
Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, England

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structure of solar magnetic fields is dominated by the effects of convection, which should be incorporated in any model of the solar cycle. Although mixing length theory is adequate for calculating the structure of main sequence stars, a better description of convection is needed for any detailed dynamo model. Recent work on nonlinear convection at low Prandtl numbers is reviewed. There has been some progress towards a theory of compressible convection, though there is still no firm theoretical evidence for cells with scales less than the depth of the converting layer. However, it remains likely that the pattern of solar convection is dominated by granules, supergranules and giant cells. The effects of rotation on these cells are briefly considered.

Type
Part 2: Solar Convection and Differential Rotation
Copyright
Copyright © Reidel 1976 

References

Böhm, K.-H.: 1963, Astrophys. J. 137, 881.CrossRefGoogle Scholar
Böhm, K.-H.: 1967, in Thomas, R. N., (ed.), Aerodynamic Phenomena in Stellar Atmospheres , Academic Press, London, p. 366.Google Scholar
Böhm, K.-H. and Stückl, E.: 1967, Z. Astrophys. 66, 487.Google Scholar
Bumba, V.: 1967, in Sturrock, P. A., (ed.), Plasma Physics , Academic Press, London, p. 77.Google Scholar
Busse, F. H.: 1970a, J. Fluid Mech. 44, 441.Google Scholar
Busse, F. H.: 1970b, Astrophys. J. 159, 629.Google Scholar
Busse, F. H.: 1973, Astron. Astrophys. 28, 27.Google Scholar
Busse, F. H.: 1975, Geophys. J. Roy. Astron. Soc. 42, 437.Google Scholar
Busse, F. H. and Whitehead, J. A.: 1974, J. Fluid Mech. 66, 67.Google Scholar
Drobyshevski, E. M. and Yuferev, V. S.: 1974, J. Fluid Mech. 65, 33.Google Scholar
Durney, B. R.: 1970, Astrophys. J. 161, 1115.Google Scholar
Durney, B. R.: 1971, Astrophys. J. 163, 353.Google Scholar
Durney, B. R.: 1976, this volume, p. 243.Google Scholar
Foukal, P.: 1972, Astrophys. J. 173, 439.Google Scholar
Foukal, P. and Jokipii, J. R.: 1975, Astrophys. J. 199, L71.CrossRefGoogle Scholar
Gilman, P. A.: 1974, Ann. Rev. Astron. Astrophys. 12, 47.CrossRefGoogle Scholar
Gilman, P. A.: 1976, this volume, p. 207.Google Scholar
Gough, D. O.: 1969, J. Atmospheric Sci. 26, 448.Google Scholar
Gough, D. O. and Weiss, N. O.: 1976, Monthly Notices Roy. Astron. Soc. (in press).Google Scholar
Gough, D. O., Spiegel, E. A., and Toomre, J.: 1975, J. Fluid Mech. 68, 695.Google Scholar
Gough, D. O., Moore, D. R., Spiegel, E. A., and Weiss, N. O.: 1976, Astrophys. J. (in press).Google Scholar
Graham, E.: 1975, J. Fluid Mech. 70, 689.Google Scholar
Harvey, J. and Schwarzschild, M.: 1975, Astrophys. J. 196, 221.Google Scholar
Howard, R.: 1971, Solar Phys. 16, 21.Google Scholar
Howard, R. and Yoshimura, H.: 1976, this volume, p. 19.Google Scholar
Jones, C. A.: 1975, Ph.D. Dissertation, University of Cambridge.Google Scholar
Jones, C. A., Moore, D. R., and Weiss, N. O.: 1976, J. Fluid Mech. 73, 353.Google Scholar
Latour, J., Spiegel, E. A., Toomre, J., and Zahn, J.-P.: 1976, Astrophys. J. (in press).Google Scholar
Mehltretter, J. P.: 1974, Solar Phys. 38, 43.CrossRefGoogle Scholar
Meyer, F., Schmidt, H. U., Weiss, N. O., and Wilson, P. R.: 1974, Monthly Notices Roy. Astron. Soc. 169, 35.Google Scholar
Moore, D. R. and Proctor, M. R. E.: 1976 (in preparation).Google Scholar
Moore, D. R. and Weiss, N. O.: 1973, J. Fluid Mech. 58, 289.Google Scholar
Mullan, D. J.: 1971, Monthly Notices Roy. Astron. Soc. 154, 467.Google Scholar
Musman, S.: 1972, Solar Phys. 26, 290.Google Scholar
Parker, E. N.: 1955, Astrophys. J. 121, 491.CrossRefGoogle Scholar
Parker, E. N.: 1973, Astrophys. J. 186, 643.Google Scholar
Parker, E. N.: 1975, Astrophys. J. 198, 205.Google Scholar
Priest, E. A. and Soward, A. M.: 1976, this volume, p. 353.Google Scholar
Roberts, P. H.: 1968, Phil. Trans. Roy. Soc. A263, 93.Google Scholar
Schwarzschild, M.: 1961, Astrophys. J. 134, 1.Google Scholar
Schwarzschild, M.: 1975, Astrophys. J. 195, 137.Google Scholar
Simon, G. W. and Weiss, N. O.: 1968, Z. Astrophys. 69, 435.Google Scholar
Spiegel, E. A.: 1965, Astrophys. J. 141, 1068.Google Scholar
Spiegel, E. A.: 1968, in Perek, L., (ed.), Highlights of Astronomy , Reidel, Dordrecht, p. 261.Google Scholar
Spiegel, E. A.: 1971a, Comm. Astrophys. Space Sci. 3, 53.Google Scholar
Spiegel, E. A.: 1971b, Ann. Rev. Astron. Astrophys. 9, 323.Google Scholar
Spiegel, E. A.: 1972, Ann. Rev. Astron. Astrophys. 10, 261.Google Scholar
Spruit, H. C.: 1974, Solar Phys. 34, 277.CrossRefGoogle Scholar
Steenbeck, M., Krause, F., and Rädler, K.-H.: 1966, Z. Naturforsch. 21a, 369.Google Scholar
Stenflo, J. O.: 1976, this volume, p.69.CrossRefGoogle Scholar
Travis, L. D. and Matsushima, S.: 1973, Astrophys. J. 180, 975.Google Scholar
Vandakurov, Y. V.: 1975, Solar Phys. 40, 3.CrossRefGoogle Scholar
Veronis, G.: 1959, J. Fluid Mech. 5, 401.Google Scholar
Veronis, G.: 1966, J. Fluid Mech. 26, 49.Google Scholar
Veronis, G.: 1968, J. Fluid Mech. 31, 113.Google Scholar
Vickers, G. T.: 1971, Astrophys. J. 163, 363.Google Scholar
Weir, A. D.: 1975, Mem. Soc. Roy. Sci. Liège (6) 8, 37.Google Scholar
Weir, A. D.: 1976, J. Fluid Mech. (in press).Google Scholar
Widnall, S.: 1975, Ann. Rev. Fluid Mech. 7, 141.Google Scholar
Widnall, S. and Sullivan, J.: 1973, Proc. Roy. Soc. A332, 335.Google Scholar