Hostname: page-component-cc8bf7c57-n7qbj Total loading time: 0 Render date: 2024-12-12T07:37:19.827Z Has data issue: false hasContentIssue false

The Origin of Absorption Spectra in Quasi-Stellar Objects

Published online by Cambridge University Press:  14 August 2015

Ray J. Weymann*
Affiliation:
Steward Observatory, University of Arizona

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A classification scheme for QSO absorption line spectra is described which ascribes the origin of the lines to at least four mechanisms: (A) Explosive ejection of material at speeds up to 0.1 c. (B) Absorption by highly ionized material moving in a rich cluster in which the QSO is embedded. (C-1) Cosmologically distant intervening material with ‘normal’ abundances, probably associated with large galactic halos. (C-2) Cosmologically distant intervening material consisting of primordial uncondensed gas. Examples of each type of spectra are given and their ionization and other spectral characteristics discussed. The similarity between the development of novae spectra and a possible evolutionary sequence of the explosive ejecta of type A is striking and suggestive. Several difficulties and unsolved problems involving this scheme are noted. Finally, we speculate on the interpretation of two interesting objects (PKS 0237-23 and the ‘twin quasars’ 0957+56A,B) in the context of this scheme.

Type
Research Article
Copyright
Copyright © Reidel 1980 

References

Bahcall, J. N. 1971, A. J., 76, p. 283.Google Scholar
Bokenberg, A., and Sargent, W. L. W. 1978, Ap. J. 220, p. 42.Google Scholar
Boroson, T. A., Sargent, W. L. W., Boksenberg, A., and Carswell, R. F. 1978, Ap. J. 220, p. 772.Google Scholar
Burbidge, E. M. 1979 (private communication).Google Scholar
Dyson, J. E., Falle, S. A. E. G., and Perry, J. J. 1979, Nature, 227, p. 118.CrossRefGoogle Scholar
Eachus, L. J., and Liller, W. 1975, Ap. J. (Letters) 200, p. L61.Google Scholar
Haschick, A. D., and Burke, B. F. 1975, Ap. J. (Letters) 200, p. L137.Google Scholar
Lynds, C. R. 1967, Ap. J., 147, p. 396.CrossRefGoogle Scholar
MacAlpine, G. M., and Lewis, D. W. 1978, Ap. J. Suppl. 36, p. 587 and references to lists I, II and III therein.Google Scholar
Miller, J. S. 1979 (private communication) Google Scholar
Perry, J. J., Burbidge, E. M., and Burbidge, G. R. 1978, Pub. Ast. Soc. Pac. 90, p. 337.CrossRefGoogle Scholar
Roberts, D. H. 1979, Ap. J. 228, p. 1.Google Scholar
Sargent, W. L. W., and Boroson, T. A. 1979, Ap. J. 228, p. 712.Google Scholar
Sargent, W. L. W., Young, P. J., Boksenberg, A., and Tytler, D. 1979, Ap. J. Suppl. (in press).Google Scholar
Savage, B. D., and deBoer, K. S. 1979, Ap. J. (Letters), 230, L77.CrossRefGoogle Scholar
Stockton, A. N. 1978, Ap. J., 223, p. 747.Google Scholar
Turnshek, D. A., Weymann, R. J., and Williams, R. E. 1979, Ap. J., 230, p. 330.Google Scholar
Turnshek, D. A., Weymann, R. J., Liebert, J. W., Williams, R. E., and Strittmatter, P. A. 1979, Ap. J. (in press).Google Scholar
Turnshek, D. A., Green, J., Liebert, J. W., Strittmatter, P. A., Weymann, R. J., and Williams, R. E. (in preparation).Google Scholar
Walsh, D., Carswell, R. F., and Weymann, R. J. 1979, Nature, 279, p. 381.Google Scholar
Weymann, R. J., Williams, R. E., Beaver, E. A., and Miller, J. S. 1977, Ap. J. 213, p. 619.Google Scholar
Weymann, R. J., Williams, R. E., Peterson, B. A., and Turnshek, D. A. 1979, Ap. J. (in press).Google Scholar
Weymann, R. J., Chaffee, F. H., Davis, M. and Carleton, N. P. 1979, Ap. J. (Letters) 233 (in press).Google Scholar
Williams, R.E., Strittmatter, P.A., Carswell, R.F., and Craine, E.R. 1975, Ap. J. 202, p. 296.Google Scholar
Williams, R.E., and Weymann, R.J. 1976, Ap. J. (Letters) 207, L143.Google Scholar
Wolfe, A.M. 1979, paper presented at “The Universe at Large Redshift” Copenhagen, June 25–29, 1979.Google Scholar