Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T03:16:29.115Z Has data issue: false hasContentIssue false

Observations of ultraviolet stellar spectra

Published online by Cambridge University Press:  14 August 2015

R. Wilson*
Affiliation:
Science Research Council, Astrophysics Research Unit, Culham Laboratory, Abingdon, Berksh., England

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dividing line between photometry and spectrometry is not always obvious and for the purpose of this review, I will define ultraviolet stellar spectroscopy as observations with sufficient spectral resolution to allow the detection of individual spectral lines and their measurement in terms of wavelength and strength. From an examination of the existing observations this results in a resolution requirement of δλ < 10 Å. Since the best spectral resolution so far obtained is about 1 Å then this places the results to be discussed within the range 1–10 Å. In terms of λ/δλ this corresponds to a range of about 2000–200 and it is important to bear in mind that these represent low resolution spectra. In fact the limit of 200 that I have imposed would rarely be used for spectroscopic studies in ground based observatories where it corresponds, in the notation of the optical astronomer, to a dispersion of about 1000 Å/mm, the resolution limit being set by the photographic plate, typically taken as 20 μ. Hence, even the faintest objects like quasars are usually studied with a dispersion of a few hundred Å mm−1. The fact that such a resolution can be included here is an indication of the exceptionally strong resonance lines which occur in the ultraviolet and which can be detected with such a resolution. On the other hand, the richness of the ultraviolet spectrum is making and will continue to make, demands on improved resolution in order to separate the many features. The best achieved resolution of about 1 Å goes only part-way to solving this problem.

Type
Part II: Stellar Line Spectra
Copyright
Copyright © Reidel 1970 

References

1. Morton, D. C. and Spitzer, L.: 1966, Astrophys. J. 144, 1.CrossRefGoogle Scholar
2. Morton, D. C.: 1967, Astrophys. J. 147, 1017.Google Scholar
3. Jenkins, E. B. and Morton, D. C.: 1967, Nature 215, 1257.Google Scholar
4. Morton, D. C., Jenkins, E. B., and Bohlin, R. C.: 1967, Astrophys. J. 154, 661.Google Scholar
5. Morton, D. C., Jenkins, E. B., and Brooks, N. H.: 1968, Princeton University Observatory Report.Google Scholar
6. Stecher, T. P.: 1967, Astron. J. 72, 831.Google Scholar
7. Stecher, T. P.: 1967, Report on Commission 44, IAU 13th General Assembly, Prague.Google Scholar
8. Smith, A. M.: 1969, Astrophys. J. 156, 93.Google Scholar
9. Carruthers, G. R.: 1968, Astrophys. J. 151, 269.Google Scholar
10. Stecher, T. P.: 1968, Goddard Preprint: Stellar Spectrophotometry from a Pointed Rocket.CrossRefGoogle Scholar
11. Gaustad, J. E. and Spitzer, L.: 1961, Astrophys. J. 134, 771.CrossRefGoogle Scholar
12. Underhill, A. B.: 1963, Pub. Dom. Astrophys. Obs. Victoria 11, 433.Google Scholar
13. Underhill, A. B.: 1962, Pub. Dom. Astrophys. Obs. Victoria 11, 467.Google Scholar
14. Hickok, F. R. and Morton, D. C.: 1968, Astrophys. J. 152, 203.Google Scholar
15. Mihalas, D. M. and Morton, D. C.: 1965, Astrophys. J. 142, 253.Google Scholar
16. Morton, D. C.: 1964, IAU Symposium 23, p. 163.Google Scholar
17. Morton, D. C.: 1965, Astrophys. J. 141, 73.Google Scholar
18. Guillaume, C., Van Rensbergen, W., and Underhill, A. B.: 1965, Bull. Astron. Inst. Netherl. 18, 106.Google Scholar
19. Adams, T. F. and Morton, D. C.: 1968, Astrophys. J. 152, 195.CrossRefGoogle Scholar
20. Mihalas, D.: 1966, Astrophys. J. Suppl. Ser. 13, 1.Google Scholar
21. Bless, R.C., Code, A.D., and Houck, T. E.: 1968, Astrophys. J. 153, 561.Google Scholar
22. Byram, E. T., Chubb, T. A., and Werner, M. W.: 1965, Ann. Astrophys. 28, 594.Google Scholar
23. Chubb, T. A. and Byram, E. T.: 1963, Astrophys. J. 138, 617.CrossRefGoogle Scholar
24. Smith, A. M.: 1967, Astrophys. J. 147, 158.Google Scholar
25. Bless, R. C., Code, A. D., Houck, T. E., McNall, J. F., and Taylor, D. J.: 1968, Astrophys. J. 153, 557.Google Scholar
26. Morton, D. C. and Adams, T. F.: 1968, Astrophys. J. 151, 611.Google Scholar
27. Underhill, A. B.: 1969, this volume, p. 215.Google Scholar
28. Wilson, R.: 1955, Observatory 75, 222.Google Scholar
29. Wilson, R.: 1957, Mem. Soc. Roy. Sci. Liège, Série 4 20, 85.Google Scholar
30. Underhill, A. B.: 1957, Mem. Soc. Roy. Sci. Liège, Série 4 20, 91.Google Scholar
31. Morton, D.C.: 1966, Astron. J. 71, 172.Google Scholar
32. Morton, D. C.: 1967, Astrophys. J. 150, 535.Google Scholar
33. Lucy, L. B. and Solomon, P. M.: 1967, Astron. J. 72, 310.Google Scholar
34. Stecher, T.: 1969, Wolf-Rayet Stars (ed. by Gebbie, K. B. and Thomas, R. N.), USDC-NBS Special Pub. 307.Google Scholar
35. Beals, C. S.: 1930, Monthly Notices Roy. Astron. Soc. 90, 202.Google Scholar
36. Beals, C. S.: 1930, Publ. Dom. Astrophys. Obs. Victoria 4, 271.Google Scholar
37. Underhill, A. B.: 1957, Mem. Soc. Roy. Sci. Liège, Série 4, 20, 17.Google Scholar
38. Borgmann, J. and Blaauw, A.: 1964, Bull. Astron. Inst. Netherl. 17, 358.Google Scholar
39. Clark, B. G.: 1965, Astrophys. J. 142, 1398.Google Scholar
40. McGee, R. X.: 1968, private communication (quoted by Morton et al. [5]).Google Scholar
41. Carruthers, G.: 1967, Astrophys. J. 148, 2141.Google Scholar
42. Stone, N. E. and Morton, D. C.: 1967, Astrophys. J. 149, 29.Google Scholar
43. Gaillard, M. and Hesser, J. E.: 1968, Astrophys. J. 152, 695.Google Scholar