Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T21:01:16.108Z Has data issue: false hasContentIssue false

Observational Properties of Molecular Outflows

Published online by Cambridge University Press:  25 May 2016

Rachael Padman
Affiliation:
Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Rd., Cambridge, CB3 0HE, ENGLAND
Stephen Bence
Affiliation:
Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Rd., Cambridge, CB3 0HE, ENGLAND
John Richer
Affiliation:
Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Rd., Cambridge, CB3 0HE, ENGLAND

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Molecular outflows are intimately related to the highly collimated Herbig–Haro jets emanating from young stars. In consequence, the usual dynamical timescale significantly underestimates the true age of an outflow. If we correct for this factor, and assume an intrinsic outflow speed similar to that of the underlying jet, we predict that molecular outflows should have an overall extent of several parsecs, in accordance with recent results. It seems likely therefore that outflows are a major source of interstellar turbulence, and have a profound impact on the process of star formation.

Whilst interpretation of jet-like outflows is relatively straightforward, the origins of shell-like outflows, such as that from L 1551–IRS5, are less obvious. We discuss the current observational status of both types of flow, and hypothesize an evolutionary connection between them. A large and well-defined outflow sample is urgently required, to permit the establishment of an age-sequence; such a sample would also provide the basis for a proper investigation of outflow energetics and interaction with the ISM.

Type
II. The Physics and Chemistry of Molecular Outflows
Copyright
Copyright © Kluwer 1997 

References

1. Bachiller, R. 1996. Ann. Rev. Astron. Astrophys. 34, 111.Google Scholar
2. Snell, R. L., Loren, R. B. & Plambeck, R. L., 1980, ApJ 239, L17.Google Scholar
3. Cohen, M, Harvey, P.M., Schwartz, R.D. & Wilking, B.A. 1984. ApJ 278, 671.Google Scholar
4. Fuller, G.A., Ladd, E.F., Padman, R., Myers, P.C., & Adams, F.C. 1995. ApJ 454, 862.Google Scholar
5. Moriarty-Schieven, G. H., Snell, R. L., Strom, S. E., Schloerb, F. P., Strom, K. M. & Grasdalen, G. L., 1987, ApJ 319, 742.Google Scholar
6. Moriarty-Schieven, G.H. & Snell, R.L. 1988. ApJ 332, 364.Google Scholar
7. Richer, J. S., Hills, R. E., Padman, R. & Russell, A. P. G., 1989, MNRAS 241, 231.CrossRefGoogle Scholar
8. Richer, J. S., Hills, R. E. & Padman, R., 1992. MNRAS 254, 525.CrossRefGoogle Scholar
9. Bachiller, R., Cernicharo, J., Martin-Pintado, J., Tafalla, M. & Lazareff, B., 1990, A&A 231, 174.Google Scholar
10. Schmid-Burgk, J., Gusten, R., Mauersberger, R., Schulz, A. & Wilson, T. L., 1990. ApJ 362, L25.Google Scholar
11. Andre, Ph., Martin-Pintado, J., Despois, D. & Montmerle, T., 1990, A&A 236, 180.Google Scholar
12. Davis, C.J., Dent, W.R.F., Matthews, H.E., Aspin, C. & Lightfoot, J.F. 1994. MNRAS 266, 933.CrossRefGoogle Scholar
13. Bally, J., Lada, C.J. & Lane, A.P. 1993. ApJ 418, 322.Google Scholar
14. Bachiller, R., Martin-Pintado, J. & Fuente, A. 1991. A&A 243, L21.Google Scholar
15. Bence, S.J., Richer, J.S. & Padman, R. 1996. MNRAS 279, 866.Google Scholar
16. Bally, J. & Devine, D. 1994, ApJ 428, L65.Google Scholar
17. De Young, D.S., 1986, ApJ 307, 62.Google Scholar
18. Stahler, S. 1994. ApJ 442, 616.Google Scholar
19. Raga, A.C., Canto, J., Calvet, N., Rodriguez, L.F. & Torrelles, J.M. 1993 A&A 276, 539.Google Scholar
20. Raga, A.C. & Cabrit, S. 1993. A&A 278, 267.Google Scholar
21. Bence, S.J., Richer, J.S. & Wright, G.S. 1997. MNRAS (submitted).Google Scholar
22. Mundt, R., Brugel, E. W. & Buhrke, T., 1987. ApJ 319, 275.Google Scholar
23. Reipurth, B. 1991. in The Physics of Star Formation and Early Stellar Evolution., ed Lada, C.J. & Kylafis, N.D.. NATO ASI Series C vol 342, 497.Google Scholar
24. Reipurth, B., Bally, J. & Devine, D. 1997. Astron. J. (in press).Google Scholar
25. Chernin, L.M., Masson, C., Gouveia Dal Pino, E.M. & Benz, W. 1994. ApJ 426, 204.Google Scholar
26. Masson, C. R. & Chernin, L. M., 1994. in Clouds, Cores and Low Mass Stars. ed Clemens, D.P. & Barvainis, R.. ASP Conf. Series. 65, 350.Google Scholar
27. Chernin, L.M. & Masson, C.R. 1995. ApJ 455, 182.CrossRefGoogle Scholar
28. Wilkin, F.P. 1996. ApJ 459, L31.Google Scholar
29. Lada, C.J & Fich, M. 1996. ApJ 459, 638.CrossRefGoogle Scholar
30. Bence, S.J., Padman, R., Isaak, K., Wiedner, M.C. & Wright, G.S. 1997. MNRAS (submitted).Google Scholar
31. Lada, C.J. 1985. Ann. Rev. Astron. Astrophys. 23, 267.CrossRefGoogle Scholar
32. Cabrit, S. & Bertout, C., 1992. A&A 261, 274.Google Scholar
33. Bontemps, S., Andre, Ph., Terebey, S. & Cabrit, S. 1996. A&A 311, 858.Google Scholar
34. Parker, N. D., Padman, R. & Scott, P. F., 1991, MNRAS 252, 442.CrossRefGoogle Scholar
35. Fukui, Y., Iwata, T., Mizuno, A., Bally, J. & Lane, A. P., 1993, in Protostars and Planets III, ed Levy, E.H. & Lunine, J.I.. Univ. Arizona Press, Tucson. p603.Google Scholar
36. Reipurth, B., & Eiroa, C. 1992. A&A 256, L1.Google Scholar
37. Larson, R.B. 1981. MNRAS 194, 809.Google Scholar
38. Falgarone, E., Puget, J.-L. & Perault, M. 1992. A&A 257, 715.Google Scholar
39. Falgarone, E. & Phillips, T.G. 1990. ApJ 359, 344.Google Scholar
40. Norman, C. & Silk, J., 1980. ApJ 238, 158.Google Scholar
41. Solomon, P.M., Huguenin, G.R. & Scoville, N.Z. 1981. ApJ 245, L19.Google Scholar
42. Margulis, M. & Lada, C.J. 1986. ApJ 309, L87.Google Scholar
43. Fukui, Y., Sugitani, K., Takaba, H., Iwata, T., Mizuno, A., Ogawa, H. & Kawabata, K. 1986. ApJ 311, L85.Google Scholar
44. Stone, J.M., Xu, J. & Mundy, L.G. 1995. Nature, 377, 315.CrossRefGoogle Scholar
45. Bally, J., Devine, D. & Reipurth, B. 1996. ApJ 473, L48.Google Scholar
46. Chernin, L.M. & Masson, C.R. 1995. ApJ 443, 181.Google Scholar
47. van Dishoeck, E.F. & Black, J.H. 1988. ApJ 334, 771.Google Scholar
48. Bence, S., Padman, R. & Isaak, K. 1997. in Low Mass Star Formation from Infall to Outflow, ed. Malbet, F. & Castets, A., Poster Proc. IAU 182, 57.Google Scholar
49. Wolf, G.A., Lada, C.J. & Bally, J. 1990. AJ 100, 1892.Google Scholar
50. Zhou, S., Evans, N.J. & Wang, Y. 1996. ApJ 466, 296.Google Scholar
51. Chandler, C.J., Terebey, S., Barsony, M., Moore, T.J. & Gautier, T.N. 1996. ApJ 471, 308.Google Scholar
52. Ohashi, N., Hayashi, M., Kawabe, R. & Ishiguro, M. 1996. ApJ 466, 317.Google Scholar
53. Bachiller, R., Guilloteau, S., Dutrey, A., Planesas, P. & Martin-Pintado, J. 1995. A&A 299, 857.Google Scholar
54. Shepherd, D. & Watson, A.M. 1997. in Low Mass Star Formation from Infall to Outflow, ed. Malbet, F. & Castets, A., Poster Proc. IAU 182, 175.Google Scholar
55. Bourke, T.L., Garay, G., Lehtinen, K.K., Kohnenkamp, I., Launhardt, R., Nyman, L.-A., May, J., Robinson, G. & Hyland, A.R. 1997. ApJ 476, 781.CrossRefGoogle Scholar
56. Bourke, T.L., Hyland, A.R., Robinson, G. & James, S.D. 1993. Proc. Astron. Soc. Australia 10, 236.Google Scholar
57. Cabrit, S. & Bertout, C., 1990. ApJ 307, 313.Google Scholar
58. Phillips, T.G., Huggins, P.J., Wannier, P.G. & Scoville, N.Z. 1979. ApJ 231, 720.CrossRefGoogle Scholar
59. Phillips, T.G., Knapp, G.R., Huggins, P.J., Werner, M.W., Wannier, P.G., Neugebauer, G. & Ennis, D. 1981. ApJ 245, 512.Google Scholar
60. Loren, R.B., Plambeck, R.L., Davis, J.H. Snell, R.L. 1981. ApJ 245, 495.Google Scholar
61. Narayanan, G. & Walker, C.K. 1996. ApJ 466, 844.Google Scholar
62. Plambeck, R.L., Snell, R.L., & Loren, R.B. 1983. ApJ 266, 321.Google Scholar
63. Wootten, A., Loren, R.B., Sandqvist, A., Friberg, P. & Hjalmarson, A. 1984. ApJ 279, 633.Google Scholar
64. Liseau, R. et al. 1996. A&A 315, L181.Google Scholar