Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T00:13:24.622Z Has data issue: false hasContentIssue false

Nutations and inelasticity of the Earth

Published online by Cambridge University Press:  03 August 2017

V. Dehant*
Affiliation:
Institut d'Astronomie et de Géophysique G. Lemaître, Université Catholique de Louvain, 2, Chemin du Cyclotron, B1348 Louvain-La-Neuve, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The adopted nutation series correspond to an elliptical uniformly rotating Earth with an elastic inner core, a liquid core and an elastic mantle. There exist nowadays a difference between the theoretical results and this theory. In this paper, we introduce the mantle inelasticity in the equations in order to give an idea of its contribution to the nutations.

Type
V. Precession & Nutation
Copyright
Copyright © Reidel 1988 

References

Anderson, D.L. & Minster, J.B., 1979. ‘The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble.’, Geophys. J. R. astr. Soc., 58, pp 431440.Google Scholar
Biot, M.A., 1954. ‘Theory of stress-strain relations in anisotropic viscosity relation phenomena.’, J. Appl. Phys., 25, 11, pp 13851391.Google Scholar
Dehant, V., 1986. Intégration des équations aux déformations d'une Terre elliptique, inélastique en rotation uniforme et à noyau liquide. , , Jan. 1986, Belgium, 298 pp.Google Scholar
Dehant, V., 1987a. ‘Integration of the deformation equations for an elliptical uniformly rotating Earth with an inelastic mantle.’, Phys. Earth Planet. Int., submitted for publication.Google Scholar
Dehant, V., 1987b. ‘Tidal parameters for an inelastic Earth.’, Phys. Earth Planet. Int., submitted for publication.Google Scholar
Dehant, V. & Antoine, J.P., 1987. ‘Normal mode expansion for an inelastic Earth.’, Phys. Earth Planet. Int., in preparation.Google Scholar
Dehant, V. & Ducarme, B., 1987. ‘Comparison between the computed and the observed tidal gravimetric factor.’, Phys. Earth Planet. Int., submitted for publication.Google Scholar
Dziewonski, A.D. & Anderson, D.L., 1981. ‘Preliminary Reference Earth Model.’, Phys. Earth Planet. Inter., 25, pp 297356.Google Scholar
Gwinn, C.R., Herring, T.A. & Shapiro, I.I., 1986. ‘Geodesy by Radio Interferometry: studies of the forced nutations of the Earth. 2. Interpretation.’, J. Geophys. Res., 91, b5, pp 47554765.Google Scholar
Herring, T.A., Gwinn, C.R. & Shapiro, I.I., 1986. ‘Geodesy by Radio Interferometry: studies of the forced nutations of the Earth. 1. Data analysis.’, J. Geophys. Res., 91, b5, pp 47454754.CrossRefGoogle Scholar
Liu, H.P., Anderson, D.L. & Kanamori, H., 1976. ‘Velocity dispersion due to anelasticity; implications for seismology and mantle composition.’, Geophys. J. R. astr. Soc., 47, pp 4158.Google Scholar
Neuberg, J., Hinderer, J., & Zurn, W., 1987. ‘Stracking gravity tide observations in central europe for the retrieval of complex eigenfrequency of the Nearly Diurnal Free Wobble.’, Geophys. J. R. astr. Soc., Submitted for publication.Google Scholar
Phinney, R.A. & Burridge, R., 1973. ‘Representation of the Elastic-Gravitational Exitation of a Spherical Earth Model by Generalized Spherical Harmonics.’, Geophys. J. R. astr. Soc., 34, pp 451487.Google Scholar
Smith, M.L., 1974. ‘The Scalar Equations of Infinitesimal Elastic-Gravitational Motion for a Rotating, Slightly Elliptical Earth.’, Geophys. J. R. astr. Soc., 37, pp 491526.Google Scholar
Wahr, J.M., 1979. The Tidal Motions of a Rotating, Elliptical, Elastic and Oceanless Earth., , , 216 pp.Google Scholar
Wahr, J.M., 1981a. ‘A normal mode expansion for the forced response of a rotating Earth.’, Geophys. J. R. astr. Soc., 64, pp 651674.Google Scholar
Wahr, J.M., 1981b. ‘The forced nutations of an elliptical, rotating, elastic and oceanless Earth.’, Geophys. J. R. astr. Soc., 64, pp 705727.Google Scholar
Wahr, J.M., 1982. ‘Computing tides, nutations and tidally-induced variations in the Earth's rotation rate for a rotating, elliptical Earth.’, Lecture at the third Int. Summer School in the Montains, on Geodesy and Global Geodynamics, Admont, Austria, ed. Moritz, H. and Sunkel, H., Graz, 689 pp.Google Scholar
Wahr, J.M. & Bergen, Z., 1987. ‘The effects of mantle inelasticity on nutations, Earth tides and tidal variations in rotation rate.’, J. Geophys. Res., submitted for publication.Google Scholar
Zschau, J., 1979. Auflastgezeiten., Habilitationsschrift der Mathematischen, Naturwissenschaftlichen Fakultät der Christian Albrechts Universität zu Kiel.Google Scholar
Zschau, J., 1985. ‘Anelasticity in the Earth's Mantle: Implications for the frequency dependence of Love numbers.’, to be published.Google Scholar
Zschau, J. & Wang, R., 1985. ‘Imperfect elasticity in the Earth's mantle: implications for Earth tides and Long period deformation.’, Proceedings of the 10th International Symposium on Earth Tides, Madrid, Spain, proceedings in press.Google Scholar