Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-12T18:48:49.948Z Has data issue: false hasContentIssue false

Non-Uniformities in the Hubble Flow: Results from a Survey of Elliptical Galaxies

Published online by Cambridge University Press:  19 July 2016

Roger L. Davies
Affiliation:
Kitt Peak National Observatory, NOAO
David Burstein
Affiliation:
Dept. of Physics, Arizona State University
Alan Dressler
Affiliation:
Mt. Wilson and Las Campanas Observatories
S. M. Faber
Affiliation:
Lick Observatory, U. C. Santa Cruz
Donald Lynden-Bell
Affiliation:
Institute of Astronomy, Cambridge, England
Roberto Terlevich
Affiliation:
Royal Greenwich Observatory, Sussex, England
Gary Wegner
Affiliation:
Dept. of Physics and Astronomy, Dartmouth College

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have used a new distance estimator for elliptical galaxies to determine the peculiar velocities, with respect to a uniform Hubble flow, of approximately 400 galaxies. The relative distances of five clusters in common with those of Aaronson et al. (1981, 1986), based on the infrared Tully-Fisher relation for spirals, are in good agreement.

We do not see the reflex of the Local Group motion with respect to the microwave background out to recession velocities of 6000 km s−1. Rather, the frame of elliptical galaxies appears to be moving with respect to the microwave background with a velocity of 600 km s−1 towards 1 = 312°, b = +6°. This motion is consistent with a re-analysis of the Rubin et al. (1976) data on the magnitude-diameter relation for ScI galaxies and with the nearby and cluster samples of Aaronson et al. (1982, 1986).

Type
Chapter III. The Classical Quantities of Cosmology
Copyright
Copyright © Reidel 1987 

References

Aaronson, M., Dawe, J. A., Dickens, R. J., Mould, J. R. and Murray, J. B., 1981, M.N.R.A.S., 195, 1p.Google Scholar
Aaronson, M., Huchra, J., Mould, J., Schechter, P. L. and Tully, R. B., 1982, Ap. J., 258, 64.Google Scholar
Aaronson, M., Bothun, G., Mould, J. R., Huchra, J., Schommers, R. A., Cornell, M., 1986, Ap. J., 302, 536.Google Scholar
Burstein, D., Davies, R. L., Dressler, A., Faber, S. M., Stone, R. P. S., Lynden-Bell, D., Terlevich, R. J. and Wegner, G., 1987a, in preparation.Google Scholar
Burstein, D., Davies, R. L., Dressler, A., Faber, S. M., Lynden-Bell, D., Terlevich, R. J. and Wegner, G., 1987b, in preparation.Google Scholar
Davies, R. L., Burstein, D., Dressler, A., Faber, S. M., Lynden-Bell, D., Terlevich, R. J. and Wegner, G., 1987, Ap. J. Suppl., in press.Google Scholar
Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R. L., Faber, S. M., Terlevich, R. J. and Wegner, G., 1987a, Ap. J., in press.Google Scholar
Dressler, A., Faber, S. M., Burstein, D., Davies, R. L., Lynden-Bell, D., Terlevich, R. J. and Wegner, G., 1987b, Ap. J., in press.Google Scholar
Peterson, C. and Baumgart, C. W., 1986, A. J., 91, 530.Google Scholar
Rubin, V. C., Ford, W. K., Thonnard, N. and Roberts, M. S., 1976, A. J., 81, 719.Google Scholar
Sandage, A. and Tammann, G. A., 1984, in “Large Scale Structure of the Universe, Cosmology and Fundamental Physics,” ed. Setti, G. and Van Horn, L. (Geneva: CERN), p.127.Google Scholar
Smoot, G. and Lubin, P. M., 1979, Ap. J. Lett. 234, L83.Google Scholar