Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T03:47:15.878Z Has data issue: false hasContentIssue false

Non thermal sputtering of grains and production of SiO in interstellar shocks

Published online by Cambridge University Press:  25 May 2016

Guillaume Pineau Des Forêts
Affiliation:
DAEC, Observatoire de Paris, 92195 Meudon Cedex, France
David Flower
Affiliation:
Physics Department, The University, Durham DH1 3LE, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present recent results for the yields of Si and O, produced in the sputtering of SiO2 by ions of different masses, and show the importance of sputtering by heavy particles at low streaming velocities. These data are incorporated in a C-shock model to study the erosion of interstellar grains and the release of silicon through non-thermal sputtering within the shock. Once in the gas phase, the atomic silicon reacts with O2 and is rapidly transformed into SiO. The column densities of SiO thus calculated are compared with the observations of molecular outflows with a satisfactory agreement. In the postshock gas, SiO disappears from the gas phase through the reaction SiO(OH,H)SiO2 and SiO2 remains, unseen, in the cold dense gas. This could explain the extremely low upper limits of SiO deduced from observations of dark clouds.

Type
Star Formation
Copyright
Copyright © Kluwer 1997 

References

Anders, E., Grevesse, N., 1989, Geochim. Cosmochim. Acta, 53, 197.CrossRefGoogle Scholar
Andersen, H.H. and Bay, H.L., 1981, in Sputtering by Particle Bombardment I, ed. Behrisch, R. (Springer-Verlag, New York), p. 145.Google Scholar
Bachiller, R., Martín-Pintado, J., Fuente, A., 1991, A&A, 243, L21.Google Scholar
Bachiller, R., Martín-Pintado, J., Fuente, A., 1993, ApJ, 417, L45.Google Scholar
Bachiller, R., Liechti, S., Walmsley, C. M., Colomer, F., 1995, A&A, 295, L51.Google Scholar
Barlow, M.J., 1978, MNRAS, 183, 367.Google Scholar
Betz, G., Wehner, G.K., 1983, in Sputtering by Particle Bombardment II, ed. Behrisch, R. (Springer-Verlag, New York), p.11.Google Scholar
Davis, C. J., Eisloeffel, J., 1995, A&A, 300, 851.Google Scholar
Draine, B.T., 1980, ApJ, 241, 1021.Google Scholar
Draine, B.T., 1990, in The Evolution of the Interstellar Medium, ed. Blitz, , ASP Conf. Series, 12, 193.Google Scholar
Draine, B.T., 1995, Ap. Sp. Sci., 233, 111.CrossRefGoogle Scholar
Draine, B.T., Roberge, W.G., Dalgarno, A., 1983, ApJ, 264, 485.Google Scholar
Draine, B.T., Salpeter, E.E., 1979a, ApJ, 231, 77.Google Scholar
Draine, B.T., Salpeter, E.E., 1979b, ApJ, 231, 438.Google Scholar
Field, D., May, P.W., Pineau des Forêts, G., Flower, D.R., 1996, MNRAS, 280, 447.Google Scholar
Flower, D.R., Pineau des Forêts, G., 1994, MNRAS, 268, 724.Google Scholar
Flower, D.R., Pineau des Forêts, G., 1995, MNRAS, 275, 1049.Google Scholar
Flower, D.R., Pineau des Forêts, G., Walmsley, C.M., 1995, A&A, 294, 815.Google Scholar
Gry, C., Boulanger, F., Falgarone, E., Pineau des Forêts, G., Lequeux, J., 1997, submitted to A&A.Google Scholar
Havnes, O., Hartquist, T.W., Pillip, W., 1987, in Physical Processes in Interstellar Clouds, Morfill, G.E. and Scholer, M. eds (Reidel, Dordrecht), p. 389.CrossRefGoogle Scholar
Heck, L., Flower, D.R., Pineau des Forêts, G., 1990, Computer Phys. Comm., 58, 169.Google Scholar
Herbst, E., Millar, T.J., Wlodek, S., Bohme, D.K., 1989, A&A, 222, 205.Google Scholar
Jansen, D.J., Spaans, M., Hogerheijde, M.R., van Dishoeck, E.F., 1995, A&A, 303, 541.Google Scholar
Jones, A.P., Tielens, A.G.G.M., Hollenbach, D.J., McKee, C.F., 1994, ApJ. 433, 797.Google Scholar
Jones, A.P., Tielens, A.G.G.M., Hollenbach, D.J., 1996, ApJ., in press.Google Scholar
Langer, W.D., Glassgold, A.E., 1990, ApJ, 352, 123.Google Scholar
Martin-Pintado, J., Bachiller, R., Fuente, A., 1992, A&A, 254, 315.Google Scholar
Mathis, J.S., Rumpl, W., Nordsieck, K.H., 1977, ApJ, 217, 425.Google Scholar
McKee, C.F., 1989, in Interstellar Dust, ed. Allamandola, L.J. and Tielens, A.G.G.M. (Dordrecht, Kluwer), p.431.Google Scholar
McKee, C.F., Hollenbach, D.J., Seab, C.G., Tielens, A.G.G.M., 1987, ApJ. 318, 674.Google Scholar
Mullan, D.J., 1971, MNRAS, 153, 145.CrossRefGoogle Scholar
Raga, A.C., Cabrit, S., Cantó, J., 1995, MNRAS, 273, 422.Google Scholar
Roth, J., Bohdansky, J., Ottenberger, W., 1979, Rpt. IPP 9/26, Max-Planck-Institut fur Plasmaphysik, Garching.Google Scholar
Schilke, P., Walmsley, C.M., Pineau des Forêts, G., Flower, D.R., 1997, A&A, in press.Google Scholar
Seab, C.G., 1987, in Interstellar Processes, Hollenbach, D. J. and Thronson, H. A. eds (Reidel, Dordrecht), p. 491.Google Scholar
Seab, C.G., Shull, J.M., 1983, ApJ. 115, 227.Google Scholar
Smith, M.D., 1991, MNRAS, 253, 175.Google Scholar
Sofia, U.J., Cardelli, J.A., Savage, B.D., 1994, ApJ, 430, 650.Google Scholar
Sofia, U.J., Savage, B.D., Cardelli, J.A., 1993, ApJ, 423, 251.Google Scholar
Spitzer, L. Jr., 1976, Comments Astrophys. 6, 177.Google Scholar
Tielens, A.G.G.M., McKee, C.F., Seab, C.G., Hollenbach, D.J., 1994, ApJ. 431, 321.Google Scholar
Turner, B.E., 1991, ApJ, 376, 573.CrossRefGoogle Scholar
van Dishoeck, E.F., Jansen, D.J., Phillips, T.G., 1993, A&A, 279, 541.Google Scholar
Zhang, Q., Ho, P.T.P., Wright, M.C.H., Wilner, D.J., 1995, ApJ, 451, L71.CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P., Littmark, U., 1985, The Stopping Range of Ions in Solids, vol. 1, Ziegler, J.F., ed, (Pergamon, New York).Google Scholar
Ziurys, L.M., Friberg, P., Irvine, W.M., 1989, ApJ, 343, 201.Google Scholar