Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T14:45:19.662Z Has data issue: false hasContentIssue false

NLTE Radiative Transfer in the Extended Atmospheres and Winds of Cool Stars

Published online by Cambridge University Press:  26 May 2016

Philip D. Bennett
Affiliation:
Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389
Graham M. Harper
Affiliation:
Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389
Alexander Brown
Affiliation:
Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389
Jeffrey L. Linsky
Affiliation:
JILA, University of Colorado and NIST, Boulder, CO 80309-0440

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mechanism responsible for driving the ubiquitous winds of cool giant and supergiant stars remains to be established. To this end, we are constructing semi-empirical models of the extended outer atmospheres (‘chromospheres’) and winds of selected red supergiants. These models are constrained by analyses of the UV line spectra of single stars, and of red supergiants in binaries that eclipse their main-sequence companions: the ζ Aur and VV Cep stars. These detached binaries are well-separated, with no evidence of mass transfer. The C II] 2325 Å line profiles of the binaries are similar to those of comparable single stars, suggesting that the chromospheres remain relatively unperturbed by binarity. However, it is unclear how much binarity disturbs the wind: binary observations suggest a gradual acceleration (β ∼ 3), but line profile analyses of single red supergiants imply a rapid acceleration (β < 1). To date, we have obtained extensive series of HST/GHRS and STIS observations of three eclipsing red supergiant binaries: ζ Aur, HR 2554 and VV Cep. In this paper, we focus on ζ Aur, and present observations and modelling results for this eclipsing binary.

Type
Session B. Radiative Transfer
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Ahmad, I. A. 1986, ApJ, 301, 275 Google Scholar
Ahmad, I. A., Chapman, R. D., & Kondo, Y. 1983, A&A, 126, L5 Google Scholar
Ahmad, I. A., & Stencel, R. E. 1988, ApJ, 329, 797 Google Scholar
Baade, R. 1990, A&A, 233, 486 Google Scholar
Baade, R., Kirsch, T., Reimers, D., Toussaint, F., Bennett, P. D., Brown, A., & Harper, G. M. 1006, ApJ, 466, 979 Google Scholar
Busche, J. R., & Hillier, D. J. 2000, ApJ, 531, 1071 Google Scholar
Carpenter, K. G., Robinson, R. D., Harper, G. M., Bennett, P. D., Brown, A., & Mullan, D. J. 1999, ApJ, 521, 382 Google Scholar
Chapman, R. D. 1981 ApJ, 248, 1043 CrossRefGoogle Scholar
Che, A., Hempe, K., & Reimers, D. 1983, A&A, 126, 225 Google Scholar
Dullemond, C. P., & Turolla, R. 2000, A&A, 360, 1187 Google Scholar
Eaton, J. A. 1992, MNRAS, 258, 473 Google Scholar
Eaton, J. A. 1993, ApJ, 404, 305 Google Scholar
Frisch, H. 1984, in Methods in Radiative Transfer, ed. Kalkofen, W., Cambridge: Cambridge University Press, 65 Google Scholar
Griffin, R. E. M., Griffin, R. F., Schröder, K.-P., & Reimers, D. 1990, A&A, 234, 284 Google Scholar
Hempe, K. 1982, A&A, 115, 133 Google Scholar
Hummer, D. G., & Rybicki, G. B. 1982, ApJ, 254, 767 Google Scholar
Kirsch, T. & Baade, R. 1994, A&A, 291, 535 Google Scholar
Kuin, N. P. M., & Ahmad, I. A. 1989, ApJ, 344, 856 Google Scholar
Lamers, H. J. G. L. M., Cerruti-Sola, M., & Perinotto, M. 1987, ApJ, 314, 726 Google Scholar
Mihalas, D. 1978, Stellar Atmospheres, 2nd ed., San Francisco: Freeman Google Scholar
Schröder, K.-P. 1985, A&A, 147, 103 Google Scholar
Schröder, K.-P. 1986, A&A, 170, 70 Google Scholar
Schröder, K.-P., Griffin, R. E. M., & Griffin, R. F. 1990, A&A, 234, 299 Google Scholar
Stencel, R. E., & Chapman, R. D. 1981, ApJ, 251, 597 Google Scholar
Wilson, O. C., & Abt, H. A. 1954, ApJS, 1, 1 Google Scholar
Wright, K. O. 1970, Vistas in Astr., 12, 147 CrossRefGoogle Scholar