Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T03:35:21.188Z Has data issue: false hasContentIssue false

New Radio Science Facilities for Compact Objects

Published online by Cambridge University Press:  19 July 2016

J. M. Cordes*
Affiliation:
Astronomy Department and NAIC, 520 Space Sciences Building, Cornell University, Ithaca, NY 14853, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a throwback to the early days in radio astronomy, new concepts for radio telescopes are being considered as next-generation facilities. The Low-Frequency Array (LOFAR) and the Square-Kilometer Array (SKA) are two particular projects that will incorporate innovations in hardware and software. Along the way to these projects, major surveys for pulsars and transients and/or follow-up pulsar timing observations will be conducted with the ALFA multibeam system at Arecibo, the Allen Telescope Array (ATA), the Extended VLA (EVLA) and with SKA prototype systems that include the European MBRACE project (Multibeam Radio Astronomy Concept Experiment) and China's FAST (500m Aperture Spherical Telescope). These projects are discussed here in the context of anticipated science drivers.

Type
Part 3: Pulsars: Surveys and Galactic Distribution
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Aller, H. D., Aller, M. F., Latimer, G. E., & Hodge, P. E. 1985, ApJS, 59, 513.Google Scholar
Aubier, A., Boudjada, M. Y., Moreau, Ph., Galopeau, P. H. M., Lecacheux, A., & Rucker, H. O. 2000, A&A, 354, 1101.Google Scholar
Berger, E., et al. 2001, Nature, 410, 338.CrossRefGoogle Scholar
Cohen, R. J., & Brebner, G. C. 1985, MNRAS, 216, 51P.Google Scholar
Colgate, S. A., & Noerdlinger, P. D. 1971, ApJ, 165, 509.Google Scholar
Cordes, J. M., Lazio, T. J. W., & Sagan, C. 1997, ApJ, 487, 782.Google Scholar
Farrell, W. M., Desch, M. D., & Zarka, P. 1999, J. Geophys. Research, 104, 14025.Google Scholar
Frail, D. A., Kulkarni, S. R., Berger, E., & Wieringa, M. H. 2003, AJ, 125, 2299.Google Scholar
Goodman, J. 1997, New Astronomy, 2, 449.Google Scholar
Hankins, T. H., Kern, J. S., Weatherall, J. C., & Eilek, J. A. 2003, Nature, 422, 141.Google Scholar
Jackson, P. D., Kundu, M. R., & White, S. M. 1989, A&A, 210, 284.Google Scholar
Kedziora-Chudczer, L. L., Jauncey, D. L., Wieringa, M. H., Tzioumis, A. K., & Reynolds, J. E. 2001, MNRAS, 325, 1411.Google Scholar
Lainela, M. 1994, A&A, 286, 408.Google Scholar
Lecacheux, A., Boudjada, M. Y., Rucker, H. O., Bougeret, J. L., Manning, R., & Kaiser, M. L. 1998, A&A, 329, 776.Google Scholar
Mann, G., Klassen, A., Classen, H.-T., Aurass, H., Scholz, D., MacDowall, R. J., & Stone, R. G. 1996, A&AS, 119, 489.Google Scholar
Phinney, S., & Taylor, J. H. 1979, Nature, 277, 117.Google Scholar
Poquerusse, M., Steinberg, J. L., Caroubalos, C, Dulk, G. A., & MacQueen, R. M. 1988, A&A, 192, 323.Google Scholar
Rhoads, J. E. 2003, ApJ, 591, 1097.Google Scholar
Shrauner, J. A., Taylor, J. H., & Woan, G. 1998, ApJ, 509, 785.Google Scholar
Taylor, J. H., Manchester, R. N., & Lyne, A. G. 1993, ApJS, 88, 529.Google Scholar
Turtle, A. J., Campbell-Wilson, D., Bunton, J. D., Jauncey, D. L., & Kesteven, M. J. 1987, Nature, 327, 38.Google Scholar
Yudaeva, N. A. 1986, Sov. Astr. Lett., 12, 150.Google Scholar