Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T15:52:58.462Z Has data issue: false hasContentIssue false

Multidimensional Hydrodynamic and Hydrostatic Stellar Models

Published online by Cambridge University Press:  26 May 2016

Robert G. Deupree*
Affiliation:
Dynamic Experimentation Division, Los Alamos National Laboratory, Los Alamos, NM, 87545 USA and Institute for Computational Astrophysics, St. Mary's University, Halifax, Nova Scotia, Canada

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Results for multidimensional stellar model simulations of both 2D and 3D hydrodynamic models and 2D stellar evolution sequences are presented. Simulations of the highly superadiabatic region of the solar convective region provide a good example of the current status and limitations of explicit 3D finite difference methods in stellar problems. Such simulations cannot be used for stellar cores, where the motion is expected to be well subsonic. The results of some 2D fully implcit hydrodynamic simulations of convective cores and shells are given for models with and without rotation, and their effects examined through fully 2D stellar evolution sequences. One effect of moderate to rapid rotation in convective cores is to alter the convective flow pattern so that convective eddies tend to line up parallel to the rotation axis. Rotation also appears to modestly reduce the amount of convective core overshooting, at least for intermediate mass models.

Type
Session 3 Rotation, Solar and Stellar Physics
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Asplund, M., Ludwig, H.-G., Nordlund, A., & Stein, R. F. 2000, A&A 359, 669.Google Scholar
Brunish, W. M. & Truran, J. W. 1982a, ApJ 256, 247.Google Scholar
Brunish, W. M. & Truran, J. W. 1982b, ApJS 49, 447.Google Scholar
Deupree, R. G. 1996, ApJ 471, 377.Google Scholar
Deupree, R. G. 2000, ApJ 543, 395.CrossRefGoogle Scholar
Deupree, R. G. 2001, ApJ 552, 268.Google Scholar
Gilman, P. A. & Glatzmaier, G. A. 1981, ApJS 45, 335.Google Scholar
Guenther, D. B. & Demarque, P. 1997, ApJ 484, 937.CrossRefGoogle Scholar
Guenther, D. B. & Demarque, P. 2000, ApJ 531, 503.CrossRefGoogle Scholar
Iben, I. Jr. 1963, ApJ 138, 452.Google Scholar
Iben, I. Jr. 1965a, ApJ 141, 993.Google Scholar
Iben, I. Jr. 1965b, ApJ 142, 1447.Google Scholar
Iglesias, C. A. & Rogers, R. J. 1996, ApJ 464, 943.Google Scholar
Latour, J., Spiegel, E. A., Toomre, J. & Zahn, J.-P. 1976, ApJ 207, 233.Google Scholar
Ogura, Y. & Phillips, N. A. 1962, J. Atmos. Sci. 19, 173.Google Scholar
Paczynski, B. 1970, ActaAstron. 20, 47.Google Scholar
Robinson, F. J., Demarque, P., Li, L. H., Sofia, S., Kim, Y.-C., Chan, K. L. & Guenther, D. B. 2003, MNRAS 340, 923 Google Scholar
Smagorinsky, J. 1963, Mon. Weather Rev. 91, 99.Google Scholar