Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T07:37:24.219Z Has data issue: false hasContentIssue false

Molecular Gas and Star Formation in Interacting and Isolated Galaxies

Published online by Cambridge University Press:  25 May 2016

J.S. Young*
Affiliation:
Department of Physics and Astronomy, Univ. of Massachusetts and FCRAO, Amherst, MA 01003 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The results of the FCRAO Extragalactic CO Survey are used to examine the trends regarding the molecular gas distribution, the star formation efficiency, and the global gas surface densities (HI and H2) in galaxies as a function of environment. Relative to a sample of isolated Sbc-Scd galaxies, the strongly interacting galaxies have more compact gas distributions, a higher mean value for the global star formation efficiency, and a larger fraction of gas in molecular form. Not only is the molecular gas redistributed during interactions, but evidence is presented for an enhanced conversion of atomic to molecular gas as well.

Type
Starbursts
Copyright
Copyright © Kluwer 1999 

References

Burton, W.B., Gordon, M., Bania, T., & Lockman, F.J. (1975), Ap. J., 202, 30.Google Scholar
Devereux, N., & Young, J.S. (1990), Ap. J., 359, 42.Google Scholar
Devereux, N., & Young, J.S. (1991), Ap.J., 371, 515.Google Scholar
Joseph, R.D., & Wright, G.S. (1985), M.N.R.A.S., 214, 87.Google Scholar
Kennicutt, R.C. (1983), Ap. J., 272, 54.Google Scholar
Larson, R., & Tinsley, B. (1978), Ap.J., 219, 46.Google Scholar
Lonsdale, C., Persson, E., & Matthews, K. (1984), Ap.J., 287, 95.CrossRefGoogle Scholar
Mirabel, F., & Sanders, D.B. (1989), Ap. J. (Letters), 340, L53.Google Scholar
Rengarajan, T.N., & Verma, R.P. (1986), Astr. Ap., 165, 300.Google Scholar
Rubin, V.C., Burstein, D., Ford, W.K., & Thonnard, N. (1985), Ap. J., 289, 81.CrossRefGoogle Scholar
Sanders, D.B., et al. (1986), Ap. J. (Letters), 305, L45.Google Scholar
Scoville, N., & Solomon, P.M. (1975), Ap. J. (Letters), 199, L105.CrossRefGoogle Scholar
Scoville, N., et al. (1986), Ap. J. (Letters), 311, L47.Google Scholar
Solomon, P.M., & Sage, L. (1988), Ap. J., 334, 613.Google Scholar
Thronson, H., et al. (1989), Ap. J., 344, 747.Google Scholar
Tinney, C., et al. (1990), Ap. J., 362, 473.Google Scholar
Young, J.S., Kenney, J., Tacconi, L., Claussen, M., et al. (1986), Ap. J., 311, L17.Google Scholar
Young, J.S., Xie, S., Tacconi, L., Knezek, P., et al. (1995), Ap. J. Suppl., 98, 219.Google Scholar
Young, J.S., Allen, L., Kenney, J., Lesser, A., & Rownd, B. (1996), A. J., 112, 1903.Google Scholar
Young, J.S., & Knezek, P. (1989), Ap. J. (Letters), 347, L55.Google Scholar
Young, J.S., & Scoville, N.Z. (1991), Ann. Rev. Astr. Ap., 29, 581.Google Scholar