Hostname: page-component-cc8bf7c57-hbs24 Total loading time: 0 Render date: 2024-12-12T06:24:15.926Z Has data issue: false hasContentIssue false

Modes of Gaseous Planet Formation

Published online by Cambridge University Press:  26 May 2016

Alan P. Boss*
Affiliation:
Carnegie Institution of Washington, Department of Terrestrial, Magnetism, 5241 Broad Branch Road, N. W., Washington, D. C 20015-1305, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The discovery of gas giant planets around nearby stars has launched a new era in our understanding of the formation and evolution of planetary systems. However, none of the over four dozen companions detected to date strongly resembles Jupiter or Saturn: their inferred masses range from sub-Saturn-mass to 10 Jupiter-masses or more, while their orbits extend from periods of a few days to a few years. Given this situation, it seems prudent to re-examine mechanisms for gas giant planet formation. The two extreme cases are top-down or bottom-up. The latter is the core accretion mechanism, long favored for our Solar System, where a roughly 10 Earth-mass solid core forms by collisional accumulation of planetesimals, followed by hydrodynamic accretion of a gaseous envelope. The former is the long-discarded disk instability mechanism, where the protoplanetary disk forms self-gravitating, gaseous protoplanets through a gravitational instability of the gas, accompanied by settling and coagulation of dust grains to form solid cores. Both of these mechanisms have a number of advantages and disadvantages, making a purely theoretical choice between them difficult at present. Observations should be able to decide the dominant mechanism by dating the epoch of gas giant planet formation: core accretion requires more than a million years to form a Jupiter-mass planet, whereas disk instability is much more rapid.

Type
Part II: Progress in the theory of planet formation
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Armitage, P. J., & Hansen, B. M. S. 1999, Nature, 402, 633.Google Scholar
Bally, J. et al. 1998, AJ, 116, 854.CrossRefGoogle Scholar
Bodenheimer, P., Hubickyj, O., & Lissauer, J. J. 2000, Icarus, 143, 2.Google Scholar
Boss, A. P. 1997, Science, 276, 1836.Google Scholar
Boss, A. P. 1998a, ApJ, J., 503, 923.CrossRefGoogle Scholar
Boss, A. P. 1998b, Nature, 393, 141.Google Scholar
Boss, A. P. 2000, ApJ, J., 536, L101.Google Scholar
Bryden, G. et al. 1999, ApJ, 514, 344.Google Scholar
Burrows, A. et al. 2000, ApJ, 534, L97.CrossRefGoogle Scholar
Butler, R. P. et al. 1999, ApJ, 526, 916.CrossRefGoogle Scholar
Cameron, A. G. W. 1978, Moon Planets, 18, 5.Google Scholar
Cassen, P. M. et al. 1981, Icarus, 48, 377.Google Scholar
Charbonneau, D. et al. 2000, ApJ, 529, L45.CrossRefGoogle Scholar
Guillot, T., Gautier, D., & Hubbard, W. B. 1997, Icarus, 130, 534.Google Scholar
Henry, G. W. et al. 2000, ApJ, 529, L41.Google Scholar
Kortenkamp, S. J., & Wetherill, G. W. 2000, Icarus, 143, 60.Google Scholar
Laughlin, G., & Bodenheimer, P. 1994, ApJ, 436, 335.Google Scholar
Levison, H. F., Lissauer, J. J., & Duncan, M. J. 1998, ApJ, 116, 1998.Google Scholar
Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature, 380, 606.Google Scholar
Lissauer, J. J. 1987, Icarus, 69, 249.Google Scholar
Marcy, G. W., & Butler, R. P. 1998, ARA&A, 36, 57.Google Scholar
Marcy, G. W., Butler, R. P., & Vogt, S. S. 2000, ApJ, 536, L43.Google Scholar
Mayor, M., & Queloz, D. 1995, Nature, 378, 355.Google Scholar
Mazeh, T. et al. 2000, ApJ, 532, L55.Google Scholar
Mizuno, H. 1980, Progr. Theor. Phys., 64, 544.Google Scholar
Nelson, A. F. 2000, ApJ, 537, L65.Google Scholar
Nelson, A. F. et al. 1998, ApJ, 502, 342.Google Scholar
Papaloizou, J. C. B., & Larwood, J. D. 2000, MNRAS, 315, 823.Google Scholar
Pickett, B. K. et al. 2000, ApJ, 529, 1034.Google Scholar
Pollack, J. B. et al. 1996, Icarus, 124, 62.Google Scholar
Queloz, D. et al. 2000, A&A, 359, L13.Google Scholar
Thommes, E. W., Duncan, M. J., & Levison, H. F. 1999, Nature, 402, 635.CrossRefGoogle Scholar
Ward, W. R. 1997, Icarus, 126, 261.Google Scholar
Weidenschilling, S. J., & Marzari, F. 1996, Nature, 384, 619.Google Scholar
Wetherill, G. W. 1990, Ann. Rev. Earth Planet. Sci., 18, 205.CrossRefGoogle Scholar
Wetherill, G. W. 1996, Icarus, 119, 219.Google Scholar
Wolk, S. J., & Walter, F. M. 1996, AJ, 111, 2066.Google Scholar
Wuchterl, G., Guillot, T., & Lissauer, J. J. 2000, in Protostars and Planets IV, Mannings, V., Boss, A. P., Russell, S. S., eds. (U. Arizona: Tucson), 1081.Google Scholar