Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T21:23:30.600Z Has data issue: false hasContentIssue false

Models for Compact X-Ray Sources

Published online by Cambridge University Press:  14 August 2015

E. E. Salpeter*
Affiliation:
Cornell University, Ithaca, N.Y., U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A statistical analysis of the UHURU catalogue of X-ray sources leads to the following conclusions. If the weak sources are omitted, there is a strong concentration to low galactic latitude but the absence of a strong background and the presence of some strong sources at low galactic longitude indicate an appreciable number of sources of luminosity L ∼ 104L in the vicinity of the ‘nuclear bulge’. This region generally suggests ‘stellar population II’ and therefore stars of small mass. However, there is some suggestion of a second class of sources, distributed in the galactic plane like ‘stellar population I’ and suggesting large stellar masses.

There are three possible types of simple X-ray spectra, (a) optically thin bremsstrahlung, (b) black-body spectrum, and (c) power-law spectra. In this talk only theoretical models for type (a) are reviewed, including accretion, rotation and vibration for a white dwarf star and cocoons around a neutron star.

Type
Part II: Theoretical Models for Compact Sources
Copyright
Copyright © Reidel 1973 

References

Apparao, K. M.: 1971, Nature Phys. Sci. 232, 153.Google Scholar
Apparao, K. M.: 1972, contributed paper, this symposium.Google Scholar
Blumenthal, G., Cavaliere, A., Rose, W., and Tucker, W.: 1972, Astrophys. J. 173, 213.Google Scholar
Blumenthal, G. R. and Tucker, W. H.: 1972, Nature 235, 97.Google Scholar
Cameron, A. G. and Mook, M.: 1967, Nature 215, 464.CrossRefGoogle Scholar
Cooke, B., Griffiths, R., and Pounds, K.: 1969, Nature 224, 134.CrossRefGoogle Scholar
Coppi, B. and Treves, A.: 1971, Astrophys. J. 167, L9.Google Scholar
Davidson, K., Pacini, F., and Salpeter, E.: 1971, Astrophys. J. 168, 45.Google Scholar
Felten, J. E. and Rees, M. J.: 1972, Astron. Astrophys. 17, 226.Google Scholar
Giacconi, R., Murray, S., Gursky, H., Kellogg, E., Schreier, E., and Tananbaum, H.: 1972, Astrophys. J., in press.Google Scholar
Gribbin, J.: 1971, Nature Phys. Sci. 233, 19.Google Scholar
Gursky, H.: 1972, private communication. CrossRefGoogle Scholar
Inanen, K. A.: 1966, Astrophys. J. 143, 153.Google Scholar
Jackson, J. C.: 1972, unpublished work. Google Scholar
Katz, J.: 1972, unpublished work. Google Scholar
Leong, C., Kellogg, E., Gursky, H., Tananbaum, H., and Giacconi, R.: 1971, Astrophys. J. Letters 170, L67.Google Scholar
Ostriker, J. P. and Bodenheimer, P.: 1968, Astrophys. J. 151, 1089.CrossRefGoogle Scholar
Prendergast, K. H. and Burbidge, G. R.: 1968, Astrophys. J. Letters 151, L83.Google Scholar
Ryter, C.: 1970, Astron. Astrophys. 9, 288.Google Scholar
Setti, G. and Woltjer, L.: 1970, Astrophys. Space Sci. 9, 185.CrossRefGoogle Scholar
Seward, F., Burginyon, G., Grader, R., and Hill, T.: 1972, Bull. Astron. Astrophys. Soc. 4, 221.Google Scholar
Shklovsky, I.: 1967, Astrophys. J. Letters 148, L1.CrossRefGoogle Scholar
Shwarzman, V. F.: 1970, Astron Zh. 47, 824.Google Scholar
Sofia, S.: 1970, Astrophys. Letters 5, 45.Google Scholar
Van Horn, H. M. and Lamb, D. Q.: 1972, to be published.Google Scholar