Hostname: page-component-cc8bf7c57-xrnlw Total loading time: 0 Render date: 2024-12-11T06:01:11.193Z Has data issue: false hasContentIssue false

Modeling of interstellar surface processes

What does the surface of grains look like?

Published online by Cambridge University Press:  25 May 2016

V. Buch
Affiliation:
The Physical Chemistry Department, Hebrew University, Jerusalem, Israel
J. P. Devlin
Affiliation:
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Computational modeling is discussed of some interstellar surface processes. The surface of interstellar grains is envisaged as covered by at least several layers of weakly bonded molecular material. Simulated amorphous ice particles were used to model interaction of such surfaces with gas, including sticking of H and D atoms, and adsorption of H2. A possibility of microporosity of interstellar ice mantles is discussed.

Type
Basic Molecular Processes
Copyright
Copyright © Kluwer 1997 

References

Andersson, B. G., Wannier, P. G. 1993, ApJ, 402, 585.Google Scholar
Brown, D. E., George, S. M., Huang, C., Wong, E. K. L., Rider, K. B., Smith, R. S., Kay, B. D., 1996, J. Phys. Chem., 100, 4988.Google Scholar
Buch, V. 1992, J. Chem. Phys., 96, 3814.Google Scholar
Buch, V., Devlin, J. P. 1991, J. Chem. Phys., 94, 4091.Google Scholar
Buch, V., Devlin, J. P. 1993, J. Chem. Phys., 98, 4195.Google Scholar
Buch, V., Devlin, J. P. 1994, ApJ, 431, L135.Google Scholar
Buch, V., Silva, S. C., Devlin, J. P. 1993, J. Chem. Phys., 99, 2265.Google Scholar
Buch, V., Zhang, Q. 1991, ApJ 379, 647.CrossRefGoogle Scholar
Chandler, D., Wolynes, P. G. 1981, J. Chem. Phys., 74, 4078.Google Scholar
d' Hendecourt, L. B., Allamandola, L. J., Greenberg, J. M., 1985, A&A 152, 130.Google Scholar
Devlin, J. P. 1992, J. Phys. Chem., 96, 6185.Google Scholar
Devlin, J. P., Buch, V. 1995, J. Phys. Chem., 99, 16534.Google Scholar
Dissly, R. W., Allen, M. Anicich, V. G. 1994, ApJ, 435, 685.CrossRefGoogle Scholar
Draine, B. T., 1985, in Protostars and Planets II, ed. Black, D and Mathews, M. (Tucson: University of Arizona Press), p. 621.Google Scholar
Duley, W. W., Williams, D. A. 1984, Interstellar Chemistry (London: Academic).Google Scholar
Hixson, H. G., Wojcik, M. J., Devlin, M. S., Devlin, J. P., Buch, V. 1992, J. Chem. Phys., 97, 753.Google Scholar
Hollenbach, D. J., Werner, M. W., Salpeter, E. E. 1971, ApJ, 163, 165.Google Scholar
Jenniskens, P., Blake, D. F., Wilson, M. A., Pohorille, A. 1995, ApJ 455, 389.Google Scholar
Mayer, E., Pletzer, R. 1986, Nature 319, 298.CrossRefGoogle Scholar
Mayer, E., Pletzer, R. 1987, Journal de Physique C1, 581.Google Scholar
McCoustra, M., Williams, D.A. 1996, M.N.R.A.S. 279, L53.CrossRefGoogle Scholar
Pletzer, R., Mayer, E., 1989, J. Chem. Phys. 90, 5207.Google Scholar
Rowland, B., Devlin, J. P. 1991, J. Chem. Phys., 94, 812.Google Scholar
Rowland, B., Fisher, M., Devlin, J. P. 1991, J. Chem. Phys., 95, 1378.Google Scholar
Sandford, S. A., Allamandola, L. J. 1993, ApJ, 409, L65.CrossRefGoogle Scholar
Sandford, S. A., Allamandola, L. J., Geballe, T. R., 1993, Science 262, 400.Google Scholar
Schmitt, B., Ocampo, J., Klinger, J., 1987, J. Phys. (Paris) 48, C1519.Google Scholar
Schutte, W. A., Greenberg, J. M., 1991, A&A 244, 190.Google Scholar
Tielens, A. G. G. M., Hagen, W., 1982, A&A 114, 245.Google Scholar
Zhang, Q., Buch, V. 1990, J. Chem. Phys., 92, 5004.Google Scholar