Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T15:39:30.374Z Has data issue: false hasContentIssue false

MHD Turbulence in the Solar Wind and Interplanetary Dynamo Effects

Published online by Cambridge University Press:  19 July 2016

E. Marsch
Affiliation:
Max-Planck-Institut für Aeronomie, W-3411 Katlenburg-Lindau, Germany
C.-Y. Tu
Affiliation:
Max-Planck-Institut für Aeronomie, W-3411 Katlenburg-Lindau, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

From the fluctuations of the velocity and magnetic field observed in different kinds of solar wind the fluctuating electric fields are derived, and their power spectra are constructed and analysed. The mean electromotive force ɛ generated by the turbulent motions depends upon the nature of the fluctuations. Simple dynamo theory predicts a linear relationship between ɛ and the mean magnetic field B0. Correlation studies carried out to establish the alpha effect in the solar wind have given negative results.

Type
1. The Solar Dynamo
Copyright
Copyright © Kluwer 1993 

References

Grappin, R., Frisch, U., Léorat, J., and Pouquet, A., Astron. Astrophys., 105, 6 (1982)Google Scholar
Grappin, R., Pouquet, A., and Léorat, J., Astron. Astrophys. , 126, 51 (1983)Google Scholar
Grappin, R., Mangeney, A., and Marsch, E., J. Geophys. Res. , 95, 8197 (1990)CrossRefGoogle Scholar
Krause, F., and Rädler, K.-H., Mean-field magnetohydrodynamics and dynamo theory , Akademie-Verlag, Berlin (1980)Google Scholar
Leer, E., Holzer, T.E., and Flå, F., Space Sci. Rev. , 33, 161 (1982)CrossRefGoogle Scholar
Mangeney, A., Grappin, R., and Velli, M., in Advances in Solar System Magnetohydrodynamics , ed. by Priest, E. R. (1990)Google Scholar
Marsch, E., in Physics of the Inner Heliosphere , vol. 2, ed. by Schwenn, R. and Marsch, E., Springer-Verlag, Berlin, Heidelberg, New York, 45 and 159 (1990)Google Scholar
Marsch, E., Adv. Space Res. , in press, (1993)Google Scholar
Marsch, E., and Tu, C.-Y., J. Plasma Phys. , 41, 479 (1989)Google Scholar
Marsch, E., and Tu, C.-Y., J. Geophys. Res. , 90, 95 (1990)Google Scholar
Marsch, E., and Tu, C.-Y., in Solar Wind Seven , ed. by Marsch, E. and Schwenn, R., Pergamon Press, Oxford, 505 (1992)CrossRefGoogle Scholar
Matthaeus, W.H., and Goldstein, M.L., J. Geophys. Res. , 87, 6011 (1982)Google Scholar
Matthaeus, W.H., and Goldstein, M.L., J. Geophys. Res. , 87, 10347 (1982)Google Scholar
Matthaeus, W.H., Goldstein, M.L., and King, J.H., J. Geophys. Res. , 91, 59 (1986)Google Scholar
Moffatt, H.K., Magnetic Field Generation in Electrically Conducting Fluids , Cambridge University Press, Cambridge (1978)Google Scholar
Moffatt, H.K., and Tsinober, A., Annu. Rev. Fluid Mech. 24, 281 (1992)Google Scholar
Montgomery, D.C., in Solar Wind Five , ed. by Neugebauer, M., NASA CP-2280, 107 (1983)Google Scholar
Roberts, D.A., and Goldstein, M.L. Reviews of Geophysics , Supplement, 932 (1991)CrossRefGoogle Scholar
Roberts, D.A., Goldstein, M.L., Matthaeus, W.H., and Gosh, S., J. Geophys. Res. 97, 17115 (1992)Google Scholar
Tu, C.-Y., Marsch, E., and Thieme, K.M., J. Geophys. Res. , 94, 739 (1989)Google Scholar
Tu, C.-Y., and Marsch, E., J. Plasma Phys. , 44, 103 (1990)Google Scholar
Velli, M., Grappin, R., and Mangeney, A., in Plasma Phenomena in the Solar Atmosphere , ed. by Dubois, M. A., Editions de Physique, Orsay (1989)Google Scholar
Zhou, Y., and Matthaeus, W.H., J. Geophys. Res. , 95, 14863 (1990)CrossRefGoogle Scholar
Zhou, Y., and Matthaeus, W.H., J. Geophys. Res. , 95, 14881 (1990)Google Scholar