Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T01:05:29.213Z Has data issue: false hasContentIssue false

Mean-Field Magnetohydrodynamics as a Basis of Solar Dynamo Theory

Published online by Cambridge University Press:  14 August 2015

K.-H. Rädler*
Affiliation:
Zentralinstitut für Astrophysik, Potsdam, G.D.R.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the most striking features of both the magnetic field and the motions observed at the Sun is their highly irregular or random character which indicates the presence of rather complicated magnetohydrodynamic processes. Of great importance in this context is a comprehension of the behaviour of the large scale components of the magnetic field; large scales are understood here as length scales in the order of the solar radius and time scales of a few years. Since there is a strong relationship between these components and the solar 22-years cycle, an insight into the mechanism controlling these components also provides for an insight into the mechanism of the cycle. The large scale components of the magnetic field are determined not only by their interaction with the large scale components of motion. On the contrary, a very important part is played also by an interaction between the large and the small scale components of magnetic field and motion so that a very complicated situation has to be considered.

Type
Part 3: Dynamo Theory and Magnetic Dissipation
Copyright
Copyright © Reidel 1976 

References

Batchelor, G. K.: 1950, Proc. Roy. Soc. A201, 406.Google Scholar
Braginski, S. I.: 1964, Zh. Eksper. Theoret. Fiz. 47, 1084.Google Scholar
Csada, I. K.: 1951, Acta Phys. Hung. 1, 235.CrossRefGoogle Scholar
Deinzer, W. and Stix, M.: 1971, Astron. Astrophys. 12, 111.Google Scholar
Deinzer, W., v. Kusserow, H.-U., and Stix, M.: 1973, Mitteilungen Astron. Ges. 34, 155.Google Scholar
Deinzer, W., v. Kusserow, H.-U., and Stix, M.: 1974, Astron. Astrophys. 36, 69.Google Scholar
Drobyshevski, E. M. and Yuferev, V. S.: 1974, J. Fluid Mech. 65, 33.Google Scholar
Jepps, S. A.: 1975, J. Fluid. Mech. 67, 625.Google Scholar
Kasantsev, A. P.: 1967, Zh. Eksper. Theoret. Fiz. 53, 1806.Google Scholar
Krause, F.: 1967, Habilitationsschrift Univ. Jena.* Google Scholar
Krause, F.: 1971, Astron. Nachr. 293, 187.Google Scholar
Krause, F. and Rädler, K.-H.: 1971, in Handbuch der Plasmaphysik und Gaselektronik 2 (ed. by Rompe, R. and Steenbeck, M.), Akademie-Verlag, Berlin.Google Scholar
Krause, F. and Roberts, P. H.: 1973a, Astrophys. J. 181, 977.CrossRefGoogle Scholar
Krause, F. and Roberts, P. H.: 1973b, Mathematika 20, 24.Google Scholar
Krause, F.: 1975, this volume, p. 305.Google Scholar
Krause, F. and Rüdiger, G.: 1975, Solar Phys. 42, 107.Google Scholar
Levy, E. H.: 1972, Astrophys. J. 171, 621.Google Scholar
Moffatt, H. K.: 1970a, J. Fluid Mech. 41, 435.CrossRefGoogle Scholar
Moffatt, H. K.: 1970b, J. Fluid Mech. 44, 705.Google Scholar
Moffatt, H. K.: 1972, J. Fluid. Mech. 53, 385.Google Scholar
Parker, E. N.: 1955, Astrophys. J. 122, 293.Google Scholar
Rädler, K.-H.: 1966, Dissertation Univ. Jena.Google Scholar
Rädler, K.-H.: 1968a, Z. Naturforsch. 23a, 1841.* Google Scholar
Rädler, K.-H.: 1968b, Z. Naturforsch. 23a, 1851.* CrossRefGoogle Scholar
Rädler, K.-H.: 1969a, Geodät. Geophys. Veröffentl. Potsdam , Reihe II, Heft 13, 131.Google Scholar
Rädler, K.-H.: 1969b, Monatsber. Dtsch. Akad. Wissensch. Berlin 11, 195.* Google Scholar
Rädler, K.-H.: 1969c, Monatsber. Dtsch. Akad. Wissensch. Berlin 11, 272.* Google Scholar
Rädler, K.-H.: 1970, Monatsber. Dtsch. Akad. Wissensch. Berlin 12, 468.Google Scholar
Rädler, K.-H.: 1974, Astron. Nachr. 295, 85.Google Scholar
Rädler, K.-H.: 1975, Astron. Nachr. (in preparation).Google Scholar
Roberts, P. H.: 1971, in Reid, W. H., (ed.), Mathematical Problems in the Geophysical Sciences , American Mathematical Society, Providence, R. I., p. 129.Google Scholar
Roberts, P. H.: 1972, Phil. Trans. Roy. Soc. London A272, 663.Google Scholar
Roberts, P. H. and Stix, M.: 1971, ‘The Turbulent Dynamo’, NCAR Technical Note TN/IA-60.Google Scholar
Roberts, P. H. and Stix, M.: 1972, Astron. Astrophys. 18, 453.Google Scholar
Roberts, P. H. and Soward, A. M.: 1975, Astron. Nachr. 296, 49.Google Scholar
Rüdiger, G.: 1974, Astron. Nachr. 295, 275.Google Scholar
Ruzmaikin, A. and Ivanova, B.: 1975, Astron. Zh. (in print).Google Scholar
Soward, A. M.: 1975, J. Fluid Mech. 69, 145.Google Scholar
Steenbeck, M. and Krause, F.: 1969, Astron. Nachr. 291, 49.Google Scholar
Steenbeck, M., Krause, F. and Rädler, K.-H.: 1963, Sitzungsber. Dtsch. Akad. Wiss. Berlin, Klasse Math.-Phys.-Tech. , Heft 1.Google Scholar
Steenbeck, M., Krause, F., and Rädler, K.-H.: 1966, Z. Naturforsch. 21a, 369.* CrossRefGoogle Scholar
Stix, M.: 1971, Astron. Astrophys. 13, 203.Google Scholar
Stix, M.: 1973, Astron. Astrophys. 24, 275.Google Scholar
Stix, M.: 1974, Astron. Astrophys. 37, 121.Google Scholar
Stix, M.: 1975, this volume, p. 367.Google Scholar
Sweet, P. A.: 1950, Monthly Notices Roy. Astron. Soc. 110, 69.Google Scholar
Vainshtein, S. I. and Zeldovich, Ja. B.: 1972, Usp. Fiz. Nauk 106, 431 (Soviet Phys.-Usp. 15, 159 (1972)).Google Scholar
Articles marked with an asterisk have been translated into English by Roberts and Stix (1971).Google Scholar