Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:00:35.106Z Has data issue: false hasContentIssue false

Mass Flow in Close Binary Systems

Published online by Cambridge University Press:  14 August 2015

Yoji Kondo
Affiliation:
Astrophysics Section, NASA Johnson Space Center, Houston, Tex., U.S.A.
G. E. Mccluskey
Affiliation:
Division of Astronomy, Dept. of Mathematics, Lehigh University, Bethlehem, Penn., U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The manner of mass flow in close binary systems is examined with a special view to the role of the so-called critical Roche (or Jacobian) lobe taking into consideration relevant physical conditions such as radiation pressure that may affect the restricted three-body problem treatment. The mass does not necessarily flow from component one to component two through the L1 point to form a gaseous ring surrounding the latter. These considerations are applied to X-ray binaries with early-type optical components, such as Cyg X-1 (HDE 226868) and 3U 1700-37 (HD 153919). In the two bright close binary systems β Lyr and UW CMa, which are believed to be undergoing dynamic mass transfer, recent Copernicus Princeton Telescope Spectrometer observations show that the gas giving rise to the prominent ultraviolet emission lines surrounds the entire binary system rather than merely component two. Implications of these observations are also discussed.

Type
Research Article
Copyright
Copyright © Reidel 1976 

References

Allen, C. W.: 1973, Astrophysical Quantities , 3rd ed., Athlone, London.Google Scholar
Bessell, M. S., Vidal, N. V., and Wickramasinghe, D. T.: 1975, Astrophys. J. 195, L117.Google Scholar
Hack, M., Hutchings, J. B., Kondo, Y., McCluskey, G. E., Plavec, M., and Polidan, R. S.: 1975, Astrophys. J. 198, 453.Google Scholar
Hutchings, J. B.: 1975, Astrophys. J. 192, 677.Google Scholar
Hutchings, J. B., Crampton, D., Glaspey, J., and Walker, G. A. H.: 1973, Astrophys. J. 182, 549.Google Scholar
Kondo, Y.: 1974, Astrophys. Space Sci. 27, 293.Google Scholar
Kuiper, G. P.: 1941, Astrophys. J. 93, 133.Google Scholar
Mauder, H.: 1975, Astrophys. J. (Lett.) 195, L27.Google Scholar
McCluskey, G. E., Kondo, Y., and Morton, D. C.: 1975, Astrophys. J. 201, 607.Google Scholar
Mikkelson, D. R. and Wallerstein, G.: 1974, Astrophys. J. 194, 459.Google Scholar
Morgan, W., Code, A., and Whitford, A.: 1955, Astrophys. J. Suppl. 2, 41.Google Scholar
Morton, D. C. and Adams, T. F.: 1968, Astrophys. J. 151, 611.Google Scholar
Osmer, P. S., Hiltner, W. A., and Whelan, J. A. J.: 1975, Astrophys. J. 195, 705.Google Scholar
Plavec, M. and Kratochvil, P.: 1964, Bull. Astr. Inst. Czech. 15, 165.Google Scholar
Rickard, J. J.: 1974, Astrophys. J. 189, L113.Google Scholar
Schuerman, D. W.: 1972, Astrophys. Space Sci. 19, 351.Google Scholar
Shelus, P. J.: 1972, Celes. Mech. 5, 483.Google Scholar
Szebehely, V.: 1967, The Theory of Orbits , Academic Press, New York.Google Scholar
Vidal, N. V., Wickramasinghe, D. T., Peterson, H. A., and Bessell, M. S.: 1974, Astrophys. J. 191, L23.Google Scholar
Walborn, N. R.: 1972, Astrophys. J. 77, 312.Google Scholar
Walborn, N. R.: 1973, Astrophys. J. 179, L123.CrossRefGoogle Scholar
Wolff, S. C. and Morrison, N. D. 1974, Astrophys. J. 187, 69.Google Scholar