Published online by Cambridge University Press: 23 September 2016
Astrophysical masers are one of the most readily detected signposts of high-mass star formation. Their presence indicates special conditions, probably indicative of a specific evolutionary phase. Masers also represent the ultimate high-resolution probe of star formation with the potential to reveal information on the kinematics and physical conditions within the region at milli-arcsecond resolution. To date this potential has largely remained unfulfilled, however, recent advances suggest that this will soon change.
The key to unlocking the potential of masers lies in identifying where they fit within the star formation jigsaw puzzle. I will review recent high resolution observations of OH, water and methanol maser transitions and what they reveal. I also briefly discuss how multi-transition observations of OH and methanol masers are being used to constrain maser pumping models and through this estimate the physical conditions in the masing region.