Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T03:25:38.405Z Has data issue: false hasContentIssue false

The Manifold of Elliptical Galaxies

Published online by Cambridge University Press:  04 August 2017

S. Djorgovski*
Affiliation:
Harvard–Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Global properties of elliptical galaxies, such as the luminosity, radius, projected velocity dispersion, projected luminosity density, etc., form a two-dimensional family. This “fundamental plane” of elliptical galaxies can be defined by the velocity dispersion and mean surface brightness, and its thickness is presently given by the measurement error-bars only. This is indicative of a strong regularity in the process of galaxy formation. However, all morphological parameters which describe the shape of the distribution of light, and reflect dynamical anisotropies of stars, are completely independent from each other, and independent of the fundamental plane. The M/L ratios show only a small intrinsic scatter in a luminosity range spanning some four orders of magnitude; this suggests a constant fraction of the dark matter contribution in elliptical galaxies.

Type
Invited Reviews
Copyright
Copyright © Reidel 1987 

References

REFERENCES:

Brosche, P. 1973, Astron. Astrophys. 23, 259.Google Scholar
Burstein, D., Davies, R., Dressler, A., Faber, S., Lynden-Bell, D., Terlevich, R., and Wagner, M. 1986, in Distances to Galaxies and Deviations from the Universal Expansion, Madore, B. and Tully, B. (eds.), p. 123. Dordrecht: D. Reidel.Google Scholar
Davies, R., Efstathiou, G., Fall, M., Illingworth, G., and Schechter, P. 1983, Astrophys. J. 266, 41.CrossRefGoogle Scholar
de Vaucouleurs, G., and Olson, D. 1982, Astrophys. J. 256, 346.Google Scholar
Djorgovski, S. 1983, Astrophys. J. Lett. 274, L7.CrossRefGoogle Scholar
Djorgovski, S. 1985a, Ph.D. Thesis, University of California, Berkeley.Google Scholar
Djorgovski, S. 1985b, Publ. Astr. Soc. Pacific 97, 1119.CrossRefGoogle Scholar
Djorgovski, S., Davis, M., and Kent, S. 1985, in New Aspects of Galaxy Photometry Nieto, J.-L. (ed.), Lectures in Physics 232, p. 257, Springer Verlag.CrossRefGoogle Scholar
Djorgovski, S., and Davis, M. 1986a, in Distances to Galaxies and Deviations from the Universal Expansion, Madore, B. and Tully, B. (eds.), p. 135. Dordrecht: D. Reidel.Google Scholar
Djorgovski, S., and Davis, M. 1986b, Astrophys. J., in press.Google Scholar
Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R., Faber, S., Wagner, M., and Terlevich, R. 1986, Astrophys. J., in press.Google Scholar
Efstathiou, G., and Fall, M. 1984, M.N.R.A.S. 206, 453.CrossRefGoogle Scholar
Faber, S., and Jackson, R. 1976, Astrophys. J. 204, 668.Google Scholar
Kormendy, J. 1982, in Morphology and Dynamics of Galaxies, proceedings of the 12th Saas-Fee Advanced Course, Geneva Observatory publication.Google Scholar
Kormendy, J. 1985, Astrophys. J. 295, 73.Google Scholar
Lauer, T. 1985, Astrophys. J. 292, 104.Google Scholar
Sandage, A., Binggeli, B., and Tamman, G. 1985, Astron. J. 90, 1759.Google Scholar
Strom, S., and Strom, K. 1978, Astron. J. 83, 732.CrossRefGoogle Scholar
Terlevich, R., Davies, R., Faber, S., and Burstein, D. 1981, M.N.R.A.S. 196, 381.Google Scholar
Tonry, J., and Davis, M. 1981, Astrophys. J. 246, 666.Google Scholar
Watanabe, M., Kodaira, K., and Okamura, S. 1985, Astrophys. J. 292, 72.Google Scholar
Whitmore, B. 1984, Astrophys. J. 278, 61.CrossRefGoogle Scholar
Whitmore, B., McElroy, D., and Tonry, J. 1985, Astrophys. J. Suppl. Ser. 59, 1.Google Scholar
Wirth, A., and Gallagher, J. 1984, Astrophys. J. 282, 85.Google Scholar