No CrossRef data available.
Published online by Cambridge University Press: 19 July 2016
LSI +61°303 outbursts are modeled as a pulsar wind nebula expanding inside the environment provided by the Be companion star's stellar wind and photon flux. A set of equations describing the system is developed and solved numerically for representative sets of parameters. Emission in X-rays through gamma-rays is due to inverse Compton emission from relativistic electrons around the pulsar. The radio emission is due to synchrotron emission of varying optical depth, which yields a varying spectral index. The peak of X-ray emission is near periastron and the peak of the radio emission is near apastron, due to reduced confining pressure on the relativistic electron cloud and its subsequent rapid expansion.