No CrossRef data available.
Published online by Cambridge University Press: 25 May 2016
Although current observations and theoretical models indicate that galaxy mergers and interactions are catalysts in the process of galaxy evolution, we have only a limited quantitative understanding of some basic aspects of the process. For example, the rate at which galaxies merge is poorly constrained. We can simplify the problem by considering only disk galaxies, which because of the fragility of their disks (cf. Tóth and Ostriker 1992) have presumably not suffered a major merger. Even so, these galaxies have almost certainly experienced the infall of small companion galaxies at some time. The Milky Way is currently experiencing the accretion of the Sagittarius dwarf (Ibata, Gilmore, & Irwin 1994) and will eventually accrete the Magellanic Clouds (Tremaine 1976). To understand how galaxies evolve, we need to have quantitative knowledge of the accretion rate as a function of mass for all types of galaxies. Here we consider only the accretion of companion galaxies (~ 10% by mass) onto large spiral galaxies.