Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-06T03:42:07.905Z Has data issue: false hasContentIssue false

Long-term stellar activity: three decades of observations

Published online by Cambridge University Press:  25 May 2016

R.A. Donahue*
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden St., Cambridge, MA 02138-1596 USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Knowledge of the solar sunspot cycle extends back to the mid-19th century with the work of Schwabe (1843) and Wolf (1856). The mean cycle period of the Sun is 11 years, however, individual cycle lengths range from 7 to 13 years (Eddy 1977). In this century, however, the length of the solar cycle has been closer to 10 years (Donahue and Baliunas 1992a). A complete explanation of the solar magnetic activity and its variations has not yet been produced, although a hydromagnetic dynamo is frequently posited as the source of solar (and therefore stellar) magnetic activity. Empirical measurements of those stars in the H-R Diagram which have convective zones and surface magnetic activity provide the boundary conditions and the range of behavior which must be explained by any all-encompassing theory explaining stellar magnetic activity, and activity cycles.

Type
Session III: “Photospheric Phenomena: Results”
Copyright
Copyright © Kluwer 1996 

References

Baliunas, S.L. and Jastrow, R. (1990), Nature , 348, 520.CrossRefGoogle Scholar
Baliunas, S.L. and Jastrow, R. (1993), Energy , 18, 1285.CrossRefGoogle Scholar
Baliunas, S.L., et al. (1983) ApJ , 275, 752.CrossRefGoogle Scholar
Baliunas, S.L., et al. (1985) ApJ , 294, 310.CrossRefGoogle Scholar
Baliunas, S.L., Donahue, R.A., Soon, W.H., et al. (1995a) ApJ , 438, 269.CrossRefGoogle Scholar
Baliunas, S.L., Donahue, R.A., Soon, W.H., et al. (1995b) BAAS , 27, 839.Google Scholar
Donahue, R.A. (1993) , .CrossRefGoogle Scholar
Donahue, R.A. and Baliunas, S.L. (1992a) Sol. Phys. , 141, 181.CrossRefGoogle Scholar
Donahue, R.A. and Baliunas, S.L. (1992b) ApJ , 363, L141.Google Scholar
Eddy, J.A. (1976) Science , 192, 1189.CrossRefGoogle Scholar
Eddy, J.A. (1977) The Solar Output and Its Variation , p. 51.Google Scholar
Foukal, P. (1992) The Solar Cycle, ASP Conf. Series, 27, 439.Google Scholar
Friis-Christensen, E. and Lassen, K. (1991) Science , 254, 698.CrossRefGoogle Scholar
Henry, G.W. (1995) Robotic Telescopes: Current Capabilities, Present Developments, and Future Prospects for Automated Astronomy , ASP Conf. Ser., in press.Google Scholar
Hudson, H.S. (1988) ARA&A , 26, 473.Google Scholar
Lockwood, G.W. and Skiff, B.A., Air Force Geophys. Lab preprint, #AFGL–TR–88–0221.Google Scholar
Lockwood, G.W., Skiff, B.A., Baliunas, S.L., and Radick, R.R. (1992) Nature , 360, 653.CrossRefGoogle Scholar
Maunder, E.H. (1890) MNRAS , 50, 251.CrossRefGoogle Scholar
Noyes, R.W., Hartmann, L., Baliunas, S.L., et al. (1984) ApJ , 279, 763.CrossRefGoogle Scholar
Saar, S.H. and Baliunas, S.L. (1992) The Solar Cycle, ASP Conf. Series, 27, 150.Google Scholar
Stuvier, M. and Braziunas, T.F. (1988) Solar and Geomagnetic Variations in the Last 10,000 Years , p. 245.Google Scholar
Vaughan, A.H., Preston, G.W. and Wilson, O.C. (1978) PASP , 90, 267.CrossRefGoogle Scholar
Vaughan, A.H., Baliunas, S.L., Middlekoop, F., et al. (1981) ApJ , 250, 276.CrossRefGoogle Scholar
Wilson, O.C. (1968) ApJ , 153, 221.CrossRefGoogle Scholar
Wilson, O.C. (1978) ApJ , 226, 379.CrossRefGoogle Scholar
Zhang, Q., Soon, W.H., Baliunas, S.L., et al. (1994) ApJ , 427, L111.CrossRefGoogle Scholar