Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T19:19:23.006Z Has data issue: false hasContentIssue false

Line driven winds, ionizing fluxes and UV-spectra of hot stars at extremely low metalIicity

Published online by Cambridge University Press:  26 May 2016

Rolf-Peter Kudritzki*
Affiliation:
Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wind models of very massive stars with metallicities in a range from 10–4-1.0 Z are presented using a new treatment of radiation driven winds with depth dependent radiative force multipliers and a comprehensive list of more than two million of spectral lines in non-LTE. The models yield mass-loss rates, wind velocities, wind momenta and wind energies as a function of metallicity and can be used to discuss the influence of stellar winds on the evolution of very massive stars in the early universe and on the interstellar medium in the early phases of galaxy formation. It is shown that the normal scaling laws, which predict stellar mass-loss rates and wind momenta to decrease as a power law with metal abundance break down at a certain threshold. The new wind models are applied to calculate ionizing fluxes and observable UV-spectra of very massive stars as a function of metallicity using the wm-basic code developed by Pauldrach et al. (2001), and the efffects of metallicity are discussed.

Type
Part 2. Interiors of Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Abbott, D.C. 1982, ApJ 259, 282.Google Scholar
Abel, T., Bryan, G.L., Norman, M.L. 2000, ApJ 540, 39.CrossRefGoogle Scholar
Abel, T., Bryan, G.L., Norman, M.L. 2002, Science 295, 93.CrossRefGoogle Scholar
Baraffe, I., Heger, A., Woosley, S.E. 2001, ApJ 550, 890.Google Scholar
Bromm, V., Coppi, P.S., Larson, R.B. 1999, ApJ (Letters) 527, L5.Google Scholar
Bromm, V., Ferrara, A., Coppi, P.S., Larson, R.B. 2001a, MNRAS 328, 969.CrossRefGoogle Scholar
Bromm, V., Kudritzki, R.-P., Loeb, A. 2001b, ApJ 552, 464.Google Scholar
Bromm, V., Loeb, A. 2002, ApJ 575, 111.CrossRefGoogle Scholar
Carr, B.J., Bond, J.R., Arnett, W.D. 1984, ApJ 277, 445.CrossRefGoogle Scholar
Castor, J.I., Abbott, D.C., Klein, R.I. 1975, ApJ 195, 157.Google Scholar
Ciardi, B., Loeb, A. 2000, ApJ 540, 687.CrossRefGoogle Scholar
Couchman, H.M.P., Rees, M.J. 1986, MNRAS 221, 53.CrossRefGoogle Scholar
Gabler, R., Gabler, A., Kudritzki, R.-P., et al. 1989 A&A 226, 162.Google Scholar
Gabler, R., Kudritzki, R.-P., Méndez, R.H. 1991, A&A 245, 587.Google Scholar
Gabler, R., Gabler, A., Kudritzki, R.-P., Méndez, R.H. 1992, A&A 265, 656.Google Scholar
Haiman, Z., Loeb, A. 1997, ApJ 483, 21.CrossRefGoogle Scholar
Kudritzki, R.-P., Yorke, H.W., Frische, H. 1988, in: Chmielewski, Y. & Lanz, T. (eds.), Radiation in Moving Gaseous Media, Proc. 18th Advanced Course of the Swiss Society of Astrophysics and Astronomy (Saas-Fee Courses), pp. 1192.Google Scholar
Kudritzki, R.-P. 1998, in: Aparicio, A., Herrero, A. & Sánchez, F. (eds.), Stellar Astrophysics for the Local Group, Proc. VIII Canary Islands Winter School on Stellar Astrophysics (Cambridge: CUP), p. 149.Google Scholar
Kudritzki, R.-P., Pauldrach, A.W.A., Puls, J. 1987, A&A 173, 293.Google Scholar
Kudritzki, R.-P., Springmann, U., Puls, J., et al. 1998, in: Howarth, I.D. (ed.), Boulder-Munich II: Properties of Hot Luminous Stars, ASP-CS 131, 299.Google Scholar
Kudritzki, R.-P., Puls, J. 2000, Ann. Review Astron. Astrophys. 38, 613.Google Scholar
Kudritzki, R.-P. 2002, ApJ 577, 389.CrossRefGoogle Scholar
Lamb, D.Q., Reichart, D.E. 2000, ApJ 536, 1.CrossRefGoogle Scholar
Leitherer, C., Robert, C., Drissen, L. 1992, ApJ 401, 596.Google Scholar
Leitherer, C., Leão, J.R.S., Heckman, T.M., et al. 2001, ApJ 550, 724.Google Scholar
Malhotra, S., Rhoads, J.E. 2002, ApJ (Letters) 565, L71.Google Scholar
Najarro, F., Kudritzki, R.-P., Cassinelli, J.P., et al. 1996, A&A 306, 892.Google Scholar
Nakamura, F., Umemura, M. 2001, ApJ 548, 19.Google Scholar
Pauldrach, A.W.A., Puls, J., Kudritzki, R.-P. 1986, A&A 164, 86.Google Scholar
Pauldrach, A.W.A., Lennon, M., Hoffmann, T.L., Sellmaier, F., Kudritzki, R.-P., Puls, J. 1998, in: Howarth, I.D. (ed.), Boulder-Munich II: Properties of Hot Luminous Stars, ASP-CS 131, 258.Google Scholar
Pauldrach, A.W.A., Lennon, M., Hoffmann, T.L. 2001, A&A 375, 161; Erratum 2002, A&A 395, 611.Google Scholar
Pettini, M., Steidel, C.C., Adelberger, K.L., et al. 2000, ApJ 528, 96.CrossRefGoogle Scholar
Rhoads, J.E., Malhotra, S. 2002, ApJ (Letters) in press.Google Scholar
Vink, J., de Koter, A., Lamers, H. 2001, A&A 369, 574.Google Scholar