Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T04:49:19.320Z Has data issue: false hasContentIssue false

Large Scale Features of the Hot Component of the Interstellar Medium

Published online by Cambridge University Press:  04 August 2017

Gordon P. Garmire*
Affiliation:
The Pennsylvania State University Department of Astronomy University Park, PA 16802

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The interstellar medium contains identifiable hot plasma clouds occupying up to about 35% of the volume of the local galactic disc. The temperature of these clouds is not uniform but ranges from 105 up to 4 × 106°K. Besides the high temperature which places the emission spectrum in the soft x-ray band, the implied pressure of the hot plasma compared to the cooler gas reveals the importance of this component in determining the motions and evolution of the cooler gas in the disc, as well as providing a source of hot gas which may extend above the galactic disc to form a corona. The following report presents data from the A-2 soft x-ray experiment on the HEAO–1 spacecraft concerning the large scale features of this gas. These features will be interpreted in terms of the late phases of supernovae expansion, multiple supernovae and the possible creation of a hot halo surrounding the region of the galactic nucleus.

Type
IV. Old Supernova Remnants - Heating of the Interstellar Medium
Copyright
Copyright © Reidel 1983 

References

Berkhuijsen, E.M.: 1973. Astron. Astrophys. 24, pp. 143147.Google Scholar
Bok, B.J.: 1971. “Sky and Telescope” 42, pp. 6469.Google Scholar
Borken, R.J. and Iwan, DeAnne: 1977. Astrophys. J. 218, pp. 511520.Google Scholar
Brown, H., Davies, R.D., and Hazard, C.: 1960. Observatory. 80, pp. 191198.Google Scholar
Bunner, A.N., Coleman, P.L., Kraushaar, W.L., and McCammon, D.: 1972. Astrophys. J. (Lett.) 172, pp. L67L72.Google Scholar
Burrows, D.N., McCammon, D., Sanders, W.T. and Kraushaar, W.L.: 1982. Astrophys. J. (submitted).Google Scholar
Cash, W., Charles, P., Bowyer, S., Walter, F., Garmire, G.P. and Riegler, G. R.: 1980. Astrophys. J. (Lett.) 238, pp. L71L76.CrossRefGoogle Scholar
Cruddace, R.G., Friedman, H., Fritz, G. and Shulman, S.: 1976. Astrophys. J. 207, pp. 888893.Google Scholar
Davidsen, A., Shulman, S., Fritz, G., Meekins, J.F., Henry, R.C. and Friedman, H.: 1972. Astrophys. J. 177, pp. 629642.Google Scholar
Heiles, C.: 1976. Astrophys. J. (Lett.) 208, pp. L137L139.Google Scholar
Heiles, C. and Jenkins, E.B.: 1976. Astron. and Astrophys. 46, pp. 333360.Google Scholar
Long, K.S., Patterson, J.R., Moore, W.E. and Garmire, G.P.: 1977. Astrophys. J. 212, pp. 427437.Google Scholar
Moore, W.E. and Garmire, G.P.: 1976. Astrophys. J. 206, pp. 247253.Google Scholar
Nousek, J.A., Cowie, L.L., Hu, E., Lindblad, C.F. and Garmire, G.P.: 1981. Astrophys. J. 248, pp. 152160.Google Scholar
Riegler, G.R., Agrawal, P.C., and Gull, S.F.: 1980. Astrophys. J. (Lett.) 235, pp. L71L75.Google Scholar
Rocchia, R., Arnand, M., Blondel, C., Cheron, C., Christy, J.C., Koch, L., Rothenflug, R., Schnopper, H.W. and Delvaille, J.P.: 1983. this volume, p. 357.Google Scholar
Rothschild, R., Boldt, E., Holt, S., Serlemitsos, P., Garmire, G., Agrawal, P., Riegler, G., Bowyer, S. and Lampton, M.: 1979. Space Science Inst. 4, pp. 269301.Google Scholar
Williamson, F.O., Sanders, W.T., Kraushaar, W.L., McCammon, D., Borken, R. and Bunner, A.N.: 1974. Astrophys. J. (Lett.) 193, pp. L133L137.Google Scholar