Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-12T06:42:39.802Z Has data issue: false hasContentIssue false

The Kinematics in the Cores of Low Surface Brightness Galaxies

Published online by Cambridge University Press:  26 May 2016

R. A. Swaters
Affiliation:
Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218, U.S.A.; and Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, U.S.A.
M. A. W. Verheijen
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
M. A. Bershady
Affiliation:
Astronomy Department, University of Wisconsin - Madison, 475 N. Charter St., Madison, WI 53706, U.S.A.
D. R. Andersen
Affiliation:
Max Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Systematic effects on HI and Hα long-slit observations make a measurement of the inner slope of the dark matter density distribution difficult to determine. Halos with constant density cores and ones with r–1 profiles both appear consistent with the data, although constant density cores generally provide better fits. High-resolution, two-dimensional velocity fields remove most of the systematic effects, yet as a result of noncircular and random motions the inner slopes still cannot be accurately measured. Halo concentration parameters provide a more useful test of cosmological models because they are more tightly constrained by observations. the concentration parameters for LSB galaxies appear consistent with, but on the low end of the distribution predicted by CDM.

Type
Part 3: Central Density Cusps, Thin Disks, and Dark Halo Substructure
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Bell, E. F. & de Jong, R. S. 2001, ApJ, 550, 212.CrossRefGoogle Scholar
Blais-Ouellette, S. Carignan, C., Amram, P., & Côté, S. 1999, AJ, 118, 2123.Google Scholar
Bullock, J. S., et al. 2001, MNRAS, 321, 559.CrossRefGoogle Scholar
de Blok, W. J. G., & Bosma, A. 2002, A&A, 385, 816.Google Scholar
de Blok, W. J. G., et al. 2001, ApJ, 552, L23.CrossRefGoogle Scholar
McGaugh, S. S., de Blok, W. J. G. 1998, ApJ, 499, 41.CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563.Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493.CrossRefGoogle Scholar
Power, C., et al., 2003, MNRAS, 338, 14.CrossRefGoogle Scholar
Simon, J. D., Bolatto, A. D., Leroy, A., & Blitz, L. 2003, ApJ, 596, 957.CrossRefGoogle Scholar
Swaters, R. A. 1999, PhD thesis, Rijksuniversiteit Groningen.Google Scholar
Swaters, R. A., Madore, B. F., & Trewhella, M. 2000, ApJ, 531, L107.CrossRefGoogle Scholar
Swaters, R. A., Madore, B. F., van den Bosch, F., & Balcells, M. 2003a, ApJ, 583, 732 (SMvdBB).CrossRefGoogle Scholar
Swaters, R. A., et al. 2003b, ApJ, 587, L19.Google Scholar
van Albada, T. S., Bahcall, J. N., Begeman, K., Sancisi, R. 1985, ApJ, 295, 305.CrossRefGoogle Scholar
van den Bosch, F. C., Swaters, R. A. 2001, MNRAS, 325, 1017.Google Scholar
van den Bosch, F. C., et al. 2000, AJ, 119, 1579.CrossRefGoogle Scholar
Zentner, A. R. & Bullock, J. S. 2002, Phys. Rev. D, 66, 43003.CrossRefGoogle Scholar