Hostname: page-component-cc8bf7c57-l9twb Total loading time: 0 Render date: 2024-12-12T06:42:40.275Z Has data issue: false hasContentIssue false

ISOPHOT observations of dust discs around main sequence stars

Published online by Cambridge University Press:  26 May 2016

H. J. Walker*
Affiliation:
Rutherford Appleton Laboratory, Chilton, Didcot 0X11 OQX, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The photometer (ISOPHOT) on the ESA Infrared Space Observatory (ISO) satellite was used to study the four Vega-like prototypes (Vega, β Pic, α PsA, ɛ Eri) and a set of candidate stars believed to have similar dust/debris discs. Most of the candidate stars were main sequence stars, but probably younger than Vega and ɛ Eri since they showed residual emission in the cores of their stellar spectral lines. Low resolution spectra were combined with long wavelength multi-filter photometry (between 60/μm and 200/μm) to give the spectral energy distributions for the dust/debris discs. Models suggested that the masses of the discs were between 10−7 and 10−4 M (2–2000 times the mass of the moon). These were more massive than the discs around the four prototypes, but less massive than the discs around young stars such as T Tau stars.

Type
Part IV: Protoplanetary and β Pic disks
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Aumann, H. H., et al. 1984, ApJ, 278, L23.CrossRefGoogle Scholar
Dunkin, S. K., Barlow, M. J., & Ryan, S. G. 1997, MNRAS, 286, 604.Google Scholar
Gabriel, C., et al. 1997, in ASP Conf. Ser. Vol 125, ADASS VI, Conference on Astronomical Data Analysis Software and Systems (San Francisco: ASP), 108.Google Scholar
Gillett, F. C. 1986, in Light on Dark Matter, ed. Israel, F. (Dordrecht: Reidel), 61.CrossRefGoogle Scholar
Greaves, J. S., et al. 1998, ApJ, 506, L133.CrossRefGoogle Scholar
Heap, S. A., et al. 2000, ApJ, 539, 435.CrossRefGoogle Scholar
Heinrichsen, I., Walker, H. J., & Klaas, U. 1998, MNRAS, 293, L78.CrossRefGoogle Scholar
Holland, W. S., et al. 1998, Nature, 392, 788.CrossRefGoogle Scholar
Kessler, M. F., et al. 1996, A&A, 315, L27.Google Scholar
Klaas, U., et al. 1997, in ESA-SP419, Proc. First ISO Workshop on Analytical Spectroscopy, eds. Heras, A., Leech, K., Trams, N., Perry, M. (Noordwijk: ESA), 113.Google Scholar
Knacke, R. F., Fajardo-Acosta, S.B., Telesco, C. M., Hackwell, J. A., Lynch, D. K., Russell, R. W. 1993, ApJ, 418, 440.Google Scholar
Koerner, D. W., Jensen, E. L. N., Cruz, K. L., Guild, T. B., Gultekin, K. 2000, ApJ, 533, L37.Google Scholar
Lemke, D., et al. 1996, A&A, 315, L64.Google Scholar
Lissauer, J. J. 2001, Nature, 409, 23.Google Scholar
Sylvester, R. J., Barlow, M. J., & Skinner, C. J. 1995, Ap&SS, 224, 405.Google Scholar
Sylvester, R. J., & Skinner, C. J. 1996, MNRAS, 283, 457.Google Scholar
Sylvester, R. J., Skinner, C. J., & Barlow, M. J. 1997, MNRAS, 289, 831.Google Scholar
Smith, B. A., & Terrile, R. T. 1984, Science, 226, 1421.CrossRefGoogle ScholarPubMed
Thi, W.F., et al. 2001, Nature, 409, 60.CrossRefGoogle Scholar
Walker, H. J., Butner, H. M., Wooden, D., Witteborn, F. 1997, in The Role of Dust in the Formation of Stars, eds Kaufl, H. U. & Siebenmorgen, R. (Berlin: Springer), 223.Google Scholar
Walker, H. J., & Heinrichsen, I. 2000, Icarus, 143, 147.Google Scholar
Walker, H. J., & Wolstencroft, R. D. 1988, PASP, 100, 1509.Google Scholar