Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T10:17:43.606Z Has data issue: false hasContentIssue false

The IR Emission Features and Hydrogenated Amorphous Carbon (HAC) Particles

Published online by Cambridge University Press:  23 September 2016

W. W. Duley*
Affiliation:
York University

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Various sources of non-equilibrium radiation from interstellar dust are discussed. It is shown that the existence of cirrus emission at 12 and 25 μm is consistent with the presence of amorphous carbon dust and arises from thermal spikes within ≃ 10å subvolumes of normal (0.01-0.1 μm radius) dust grains. The 3.28 μm unidentified infrared (UIR) feature also arises in this way, as the radiative relaxation of high energy vibrational modes accompanying a thermal spike in hydrogenated amorphous carbon. Extended red emission (ERE) and near-infrared (NIR) emission are also discussed and are postulated to originate as edge and defect luminescence from HAC solids with bandgaps Eg ≲ 2.5eV.

Type
Section II: The Overidentified Infrared Emission Features
Copyright
Copyright © Kluwer 1989 

References

Allamandola, L. J., Tielens, A. G. G. M. and Barker, J. R. 1985, Ap. J. (Letters), 290, L25L28.Google Scholar
Allamandola, L. J., Tielens, A. G. G. M. and Barker, J. R. 1987, in Polycyclic Aromatic Hydrocarbons and Astrophysics: NATO ASI series C 191., eds. Léger, A., d'Hendecourt, L. B. and Boccarara, N., (Dordrecht: Reidel), p. 255271.CrossRefGoogle Scholar
Barker, J. R., Allamandola, L. J. and Tielens, A. G. G. M. 1987, Ap. J. (Letters), 315, L61L65.Google Scholar
Baumgartner, R., Englehardt, M. and Renk, K. F. 1983, Phys. Lett., 94A, 5558.Google Scholar
Butchart, I., McFadzean, A. D., Whittet, D. C. B., Geballe, T. R. and Greenberg, J. M. 1986, Astr. Ap., 154, L5.Google Scholar
Draine, B. and Anderson, N. 1985, Ap. J., 292, 494499.Google Scholar
Duley, W. W., 1973, Nature (Phys. Sci.), 244, 5758.Google Scholar
Duley, W. W. 1984, Ap. J., 287, 694696.Google Scholar
Duley, W. W. 1987, M. N. R. A. S., 229, 203212.Google Scholar
Duley, W. W. and Williams, D. A. 1983, M. N. R. A. S., 205, 67P70P.Google Scholar
Duley, W. W. and Williams, D. A. 1986, M. N. R. A. S., 219, 859864.CrossRefGoogle Scholar
Duley, W. W. and Williams, D. A. 1988a, M. N. R. A. S., 231, 969975.CrossRefGoogle Scholar
Duley, W. W. and Williams, D. A. 1988b, M. N. R. A. S., 230, 1P4P.Google Scholar
Jones, A. P., Duley, W. W. and Williams, D. A. 1987, M. N. R. A. S., 229, 213221.Google Scholar
Léger, A. and Puget, J. L. 1984, Astr. Ap., 137, L5L8.Google Scholar
Malinovsky, V. K. 1987, J. Non-Crystalline Sol., 90, 3744.Google Scholar
Ogmen, M. and Duley, W. W. 1988, Ap. J. (Letters), (in press).Google Scholar
Phillips, J. C. 1982, Phys. Rev., B25, 13971400.Google Scholar
Puget, J. L., Léger, A. and Boulanger, F. 1985, Astr. Ap., 142, L19L22.Google Scholar
Purcell, E. M. 1976, Ap. J., 206, 685690.Google Scholar
Robertson, J. and O'Reilly, E. P. 1987, Phys. Rev., B35, 29462957.CrossRefGoogle Scholar
Robertson, J. 1986, Adv. Phys., 35, 317374.CrossRefGoogle Scholar
Sellgren, K. 1984, Ap. J., 277, 623633.Google Scholar
Street, R. A. 1980, Phys. Rev., B21, 57755784.Google Scholar
van Breda, I. G. and Whittet, D. C. B. 1981, M. N. R. A. S., 195, 7988.Google Scholar
Watanabe, I., Hasegawa, S. and Kurata, Y. 1982, Japan J. Appl. Phys., 21, 856859.Google Scholar
Weiland, J. L., Blitz, L., Dwek, E., Hauser, M. G., Magnani, L. and Rickard, L. J. 1986, Ap. J., 306. L101L104.CrossRefGoogle Scholar
Witt, A. N. and Schild, R. E. 1985, Ap. J., 294, 225230.Google Scholar
Witt, A. N., Schild, R. E. and Kraiman, J. R. 1984, Ap. J., 281, 708718.CrossRefGoogle Scholar
Wdowiak, T. J., Flickinger, G. C. and Cronin, J. R. 1988, Ap. J. (Letters), 328, L75.Google Scholar