Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T06:30:57.134Z Has data issue: false hasContentIssue false

Investigating the long-term evolution of galaxies: Noise, cuspy halos and bars

Published online by Cambridge University Press:  26 May 2016

Martin D. Weinberg*
Affiliation:
University of Massachusetts, Amherst, Massachusetts, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review the arguments for the importance of halo structure in driving galaxy evolution and coupling a galaxy to its environment. We begin with a general discussion of the key dynamics and examples of structure dominated by modes. We find that simulations with large numbers of particles (N ≳ 106) are required to resolve the dynamics. Finally, I will describe some new results which demonstrates that a disk bar can produce cores in a cuspy CDM dark-matter profile within a gigayear. An inner Lindblad-like resonance couples the rotating bar to halo orbits at all radii through the cusp, rapidly flattening it. This resonance disappears for profiles with cores and is responsible for a qualitative difference in bar-driven halo evolution with and without a cusp. Although the bar gives up the angular momentum in its pattern to make the core, the formation epoch is rich in accretion events to recreate or trigger a classic stellar bar. The evolution of the cuspy inner halo by the first-generation bar paves the way for a long-lived subsequent bar with low torque and a stable pattern speed.

Type
Galactic Dynamics
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Barnes, J. E. and Hut, P. 1986, Nature, 324, 446.CrossRefGoogle Scholar
Binney, J. and Tremaine, S. 1987, Galactic Dynamics , Princeton University Press, Princeton, New Jersey.Google Scholar
Clutton-Brock, M. 1972, Astrophys. Space. Sci., 16, 101.CrossRefGoogle Scholar
Clutton-Brock, M. 1973, Astrophys. Space. Sci., 23, 55.CrossRefGoogle Scholar
de Blok, W. J. G., McGaugh, S. S., Bosma, A., and Rubin, V. C. 2001, ApJ, 552, L23.CrossRefGoogle Scholar
Debattista, V. P. and Sellwood, J. A. 1998, ApJL, 493, L5.Google Scholar
Debattista, V. P. and Sellwood, J. A. 2000, ApJ, 543, 704.Google Scholar
Fridman, A. M. and Polyachenko, V. L. 1984, Physics of Gravitating Systems , Vol. 2, p. 282, Springer-Verlag, New York.Google Scholar
Hernquist, L. and Ostriker, J. P. 1992, ApJ, 386, 375.Google Scholar
Hernquist, L., Sigurdsson, S., and Bryan, G. L. 1995, ApJ, 446, 717.Google Scholar
Hernquist, L. and Weinberg, M. D. 1992, ApJ, 400, 80.CrossRefGoogle Scholar
Jing, Y. P. and Suto, Y. 2000, ApJL, 529, L69.Google Scholar
Kalnajs, A. J. 1976, ApJ, 205, 745.CrossRefGoogle Scholar
Kawai, A., Fukushige, T., Makino, J., and Taiji, M. 2000, PASJ, 52, 659.Google Scholar
King, I. R. 1966, AJ, 71, 64.Google Scholar
Moore, B., Lake, G., and Katz, N. 1998, ApJ, 495, 139.Google Scholar
Navarro, J. F., Frenk, C. S., and White, S. D. M. 1997, ApJ, 490, 493.Google Scholar
Spergel, D. N. and Steinhardt, P. J. 2000, Physical Review Letters, 84, 3760.Google Scholar
Spitzer, L. 1987, Dynamical Evolution of Globular Clusters , Princeton University Press, Princeton, New Jersey.Google Scholar
Tremaine, S. and Ostriker, J. P. 1999, MNRAS, 306, 662.Google Scholar
van den Bosch, F. C. and Swaters, R. A. 2001, MNRAS, 325, 1017.Google Scholar
Weinberg, M. D. 1985, MNRAS, 213, 451.Google Scholar
Weinberg, M. D. 1991, ApJ, 373, 391.Google Scholar
Weinberg, M. D. 1994, ApJ, 421, 481.Google Scholar
Weinberg, M. D. 1999, AJ, 117, 629.Google Scholar
Weinberg, M. D. 2001a, MNRAS, in press.Google Scholar
Weinberg, M. D. 2001b, MNRAS, in press.Google Scholar