Hostname: page-component-cc8bf7c57-hbs24 Total loading time: 0 Render date: 2024-12-12T04:38:24.308Z Has data issue: false hasContentIssue false

Intracluster Stellar Population

Published online by Cambridge University Press:  26 May 2016

Magda Arnaboldi*
Affiliation:
INAF, Astronomical Observatory of Turin, Strada Osservatorio 20, 10025 Pino Torinese, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I shall review the latest results for the presence of diffuse light in nearby clusters, and the evidence of ongoing star formation in an intracluster Virgo field. I shall discuss how intracluster planetary nebulae (ICPN) can be used as excellent tracers of the diffuse stellar population in nearby clusters. Their number density distribution, density profile and radial velocity distribution provide observational constraints to models for cluster formation and evolution. The preliminary comparison of the available ICPN samples with high resolution N-body models of a Virgo-like cluster in a Lambda CDM cosmology supports “harassment” as the most likely mechanism for the origin of diffuse stellar light in clusters.

Type
Part 1. Census
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Arnaboldi, M., et al. 1996, ApJ, 472, 145.CrossRefGoogle Scholar
Arnaboldi, M., et al. 2002, AJ, 123, 760.CrossRefGoogle Scholar
Arnaboldi, M., et al. 2003, AJ, 125, 514.CrossRefGoogle Scholar
Bassino, L.P., et al. 2003, A&A, 399, 489.Google Scholar
Bernstein, G.M., et al. 1995, AJ, 110, 1507.CrossRefGoogle Scholar
Bingelli, B., Tammann, G.A., Sandage, A. 1987, AJ, 94, 251.CrossRefGoogle Scholar
Calcáneo-Roldán, C., et al. 2000, MNRAS, 314, 324.CrossRefGoogle Scholar
Castro-Rodriguez, N., et al. 2003, A&A, 405, 803.Google Scholar
Ciardullo, R. et al. 1989, ApJ, 339, 53.CrossRefGoogle Scholar
Coté, P., et al. 2001, ApJ, 559, 828.CrossRefGoogle Scholar
Drinkwater, M.J., et al. 2003, Nature, 423, 519.CrossRefGoogle Scholar
Dubinski, J., Mihos, J.C., Hernquist, L., 1999, ApJ, 526, 607.CrossRefGoogle Scholar
Durrell, P., et al. 2002, ApJ, 570, 119.CrossRefGoogle Scholar
Feldmeier, J.J., Ciardullo, R., Jacoby, G.H., 1998, ApJ, 503, 109.CrossRefGoogle Scholar
Feldmeier, J.J., et al. 2002, ApJ, 575, 779.CrossRefGoogle Scholar
Feldmeier, J.J., et al. 2003, ApJS, 145, 65.CrossRefGoogle Scholar
Ferguson, H., Tanvir, N., von Hippel, T. 1998, Nature, 391, 461.CrossRefGoogle Scholar
Freeman, K.C., et al. 2000, Asp. Conf. Ser. 197, 389.Google Scholar
Gam-Yam, A., et al. 2003, AJ, 125, 1087.CrossRefGoogle Scholar
Gerhard, O., et al., 2002, ApJ, 580, 121.CrossRefGoogle Scholar
Gregg, M.D., & West, M.J. 1998, Nature, 396, 549.CrossRefGoogle Scholar
Gonzalez, A.H., et al. 2000, ApJ, 536, 561.CrossRefGoogle Scholar
Helmi, A., 2001, Nature, 412, 25.CrossRefGoogle Scholar
Kudritzki, R.-P., et al. 2000, ApJ, 536, 19.CrossRefGoogle Scholar
Jordan, A., et al. 2003, AJ, 125, 1642.CrossRefGoogle Scholar
Mayer, L., et al. 2001, ApJ, 547, L123.CrossRefGoogle Scholar
Merritt, D., 1984, ApJ, 276, 26.CrossRefGoogle Scholar
Moore, B., Katz, N., Lake, G., 1996, ApJ, 457, 455.CrossRefGoogle Scholar
Napolitano, N.R., et al. 2003, ApJ, 594, 172.CrossRefGoogle Scholar
Okamura, S., et al. 2002, PASJ, 54, 883.CrossRefGoogle Scholar
Smith, H.A., 1981, AJ, 86, 998.CrossRefGoogle Scholar
Trentham, N., & Mobasher, B., 1998, MNRAS, 293, 53.CrossRefGoogle Scholar
Uson, J.M., et al. 1991, ApJ, 369, 46.CrossRefGoogle Scholar
West, M.J., et al. 1995, ApJ, 453, L77.CrossRefGoogle Scholar
White, P.M., et al. 2003, ApJ, 585, 739.CrossRefGoogle Scholar
Zwicky, F., 1951, PASP, 63, 61.CrossRefGoogle Scholar