Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-05T02:38:07.510Z Has data issue: false hasContentIssue false

Infrared Molecular Absorption Features

Published online by Cambridge University Press:  14 August 2015

S. P. Willner
Affiliation:
University of California, San Diego
R. C. Puetter
Affiliation:
University of California, San Diego
Ray W. Russell
Affiliation:
Cornell University
B. T. Soifer
Affiliation:
California Institute of Technology

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spectra of infrared sources associated with molecular clouds have shown absorption features at wavelengths of 6.0 and 6.8 μm. We suggest that the 6.0 μm feature can be identified with the stretching vibration of C=0 and the 6.8 μm feature with the bending vibrations of CH2 and CH3. The amount of carbon in the form of hydrocarbon molecules may be comparable to the amount in CO. This abundance of hydrocarbons is probably too large to be consistent with radio observations if the molecules are gaseous, but large abundances of hydrocarbons on the surfaces of grains may explain the infrared features, yet be unobservable in the radio.

Type
Research Article
Copyright
Copyright © Reidel 1980 

References

Allen, M., and Robinson, G.W.: 1977, Astrophys. J. 212, pp. 396-415.Google Scholar
Capps, R.W., Gillett, F.C., and Knacke, R.F.: 1978, Astrophys. J. 226, pp. 863-868.Google Scholar
Day, K.L.: 1978, private communication.Google Scholar
Duley, W.W., and McCullough, J.D.: 1977, Astrophys. J. (Letters) 211, pp. L145-L148.Google Scholar
Forrest, W.J., Gillett, F.C., Houck, J.R., McCarthy, J.F., Merrill, K.M., Pipher, J.L., Puetter, R.C., Russell, R.W., Soifer, B.T., and Willner, S.P.: 1978, Astrophys. J. 219, pp. 114-120.Google Scholar
Kroto, H.W., Kirby, C., Walton, D.R.M., Avery, L.W., Broten, N.W., MacLeod, J.M., and Oka, T.: 1978, Astrophys. J. (Letters) 219, pp. L133-L137.Google Scholar
Merrill, K.M., Russell, R.W., and Soifer, B.T.: 1976, Astrophys. J. 207, pp. 763-769.Google Scholar
Puetter, R.C., Russell, R.W., Soifer, B.T., and Willner, S.P.: 1979, Astrophys. J. 228, pp. 118-122.Google Scholar
Puetter, R.C., Russell, R.W., Soifer, B.T., Willner, S.P.: 1980, in preparation. For partial abstract see Bull. Amer. Astron. Soc. 9, p. 571.Google Scholar
Russell, R.W., Soifer, B.T., and Puetter, R.C.: 1977, Astron. Astrophys. 54, pp. 959-960.Google Scholar
Soifer, B.T., Puetter, R.C., Russell, R.W., Willner, S.P., Harvey, P.M., and Gillett, F.C.: 1979, Astrophys. J. (Letters) 232, pp. 53-57.CrossRefGoogle Scholar
Stephens, J.R., and Russell, R.W.: 1979, Astrophys. J. 228, pp. 780-786.Google Scholar
Watson, W.D., and Salpeter, E.E.: 1972, Astrophys. J. 174, pp. 321-340.Google Scholar
Wexler, A.S.: 1967, Appl. Spectrosc. Rev. 1, pp. 29-98.Google Scholar
Willner, S.P., Russell, R.W., Puetter, R.C., Soifer, B.T., and Harvey, P.M.: 1979, Astrophys. J. (Letters) 229, pp. L65-L68.Google Scholar
Winnewisser, G., and Walmsley, C.M.: 1978, Astron. Astrophys. 70, pp. L37-L39.Google Scholar